
Tool Support for Designing Nomadic Applications

Giulio Mori, Fabio PaternÚ, Carmen Santoro
I.S.T.I. ñ C.N.R.

Via G. Moruzzi, 1
56100 Pisa, Italy

+39 050 315 3066
{g.mori, f.paterno, c.santoro}@cnuce.cnr.it

ABSTRACT
Model-based approaches can be useful when designing nomadic
applications, which can be accessed through multiple interaction
platforms. Various models and levels of abstraction can be
considered in such approaches. The lack of automatic tool support
has been the main limitation to their use. We present a tool,
TERESA, supporting top-down transformations from task models
to abstract user interfaces and then to user interfaces for different
types of interaction platforms (such as mobile phones or desktop
systems). It allows designers to keep a unitary view of the design
of a given nomadic application. Moreover, the tool provides
support for obtaining effective interfaces for each type of platform
available, taking into account the consequent differences in terms
of tasks and their performance.

Categories and Subject Descriptors
D.1.7 [Visual Programming]; D.2.2 [Design Tools and
Techniques]: User interfaces; H.5.2 [User Interfaces]: User
interface management systems (UIMS); I.2.4 [Knowledge
Representation Formalisms and Methods].

General Terms
Design, Human Factors, Languages.

Keywords
Multi-platform applications, Model-based design, Tool support
for designers.

1. INTRODUCTION
Designing applications that exploit new multi-platform
technology is often a difficult problem. For software developers
this introduces the problem of constructing multiple versions of
single applications and endowing these versions with the ability to
respond to changes in context. Creating different versions of
applications for different devices engenders extra development
and expensive maintenance costs of cross-platform consistency
and complicates the problems of configuration management.

In a recent paper, discussing the future of user interface tools,
Myers, Hudson, and Pausch [3] indicate that the wide platform
variability encourages a return to the study of some techniques for
device-independent user interface specification. The results of this
approach is that developers can define the input and output needs
of their applications, vendors can describe the input and output
capabilities of their devices, and users can specify their
preferences. Then, the system can choose appropriate interaction
techniques taking all of these into account.
The basic idea is that, instead of having separate applications for
each device that exchange only basic data, there is some abstract
description and then an environment that is able to suggest a
design for a specific device geared towards its features and
possible contexts of use. This is the main goal of the model-based
approaches [6][8][11] that have been considered, though not
extensively accepted in the last decade.
However, nomadic applications raise new challenges that can be
better addressed using a model-based approach. There is a need
for a unitary view of nomadic applications, even if their parts
require different instantiation for different platforms. This allows
designers to understand and control the dependencies among such
instances. Secondly, new design criteria suitable for mobile
devices should be introduced.
In our method [7] we focus on models that can support
development of user interfaces while preserving usability, in
particular task models specifying the different activities that are
supposed to be performed in an interactive system. Such models
should be developed involving users so as to represent how they
prefer to perform activities.
In order to support development of nomadic applications we have
designed and developed the TERESA (Transformation
Environment for inteRactivE Systems representAtions) tool
providing general solutions that can be tailored to specific cases.
This tool supports transformations in a top-down manner,
providing the possibility of obtaining more concrete descriptions
starting with abstract representations.
In the paper after some discussion of related work, we first
introduce the method that we have developed to support design of
nomadic applications followed by a discussion of the relations
among tasks and platforms and how we had to improve the CTTE
tool in order to allow designers to better capture such flexible
relations. Then, we move on to provide an overall description of
the first version of the TERESA tool. We devote a good deal of
attention to how the mixed initiative paradigm is supported in
TERESA. We also illustrate the XML language used to describe

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
IUI’03, January 12–15, 2003, Miami, Florida, USA.
Copyright 2003 ACM 1-58113-586-6/03/0001…$5.00.

abstract user interfaces. Lastly, some examples followed by
concluding remarks are provided.

2. RELATED WORK
The basic idea of how to cope with the current situation of
heterogeneity of currently available devices and the need for
usable UIs is that, instead of having separate applications for each
device, that exchange only basic data, there is some abstract
description and an environment able to suggest a design suitable
for a specific device.
This problem is a novel challenge for model-based design and
development of interactive applications. The potentialities of these
approaches have only begun to be addressed. In the GUITARE
Esprit project (http://giove.cnuce.cnr.it/guitare.html) a user
interface generator was developed: it takes ConcurTaskTrees
(CTT) task models [6] and produces user interfaces for ERP
applications according to company guidelines. However,
automatic generation is not a general solution because of many,
varying factors that have to be taken into account within the
design process. Semi-automatic support is more general and
flexible: Mobi-D [8] is an example of a semi-automatic approach,
but it only supports design of traditional graphical desktop
applications.
UIML [1] is an appliance-independent XML user interface
language. While this language is ostensibly independent of the
specific device and medium used for the presentation, it does not
take into account the research work carried out over the last
decade on model-based approaches for user interfaces: for
example, the language provides no notion of task, it mainly aims
to define an abstract structure. The W3C consortium has recently
delivered the first version of a new standard (XForms) that
presents a description of the architecture, concepts, processing
model, and terminology underlying the next generation of Web
forms, based on the separation between the purpose and the
presentation of a form. If it shows the importance of separating
conceptual design from concrete presentation, it also highlights
the need for meaningful models to support such approaches.
XIML [9] (eXtensible Interface Markup Language,
http://www.ximl.org) is a XML-based language, whose initial
development took place at the research laboratories of RedWhale
Software. It is intended to be a universal user interface
specification language, since it provides a way to completely
describe a user interface and represent attributes and relations of
the important elements of a user interface without worrying about
how they will be implemented. In other words, it enables a
framework for the definition and interrelation of interaction data
items, thereby providing a standard mechanism for applications
and tools to interchange interaction data and interoperate within
integrated user-interface engineering processes, from design, to
operation, to evaluation. Today XIML is probably the most
advanced UI specification language, as it can serve for context-
sensitivity and many other objectives. However, it is worth noting
that XIML mainly focuses on syntactic, rather than semantic
aspects. In addition, tool support is not publicly available.
Collagen [10] uses an explicit embedded task model to support
the creation of task-aware collaborative agents. The agent
interprets and guesses the user’s current intentions, and can
determine efficient plans to achieve them. The issues related to

design of multi-platform applications are not considered in this
approach.
ARTStudio [12] is an early research prototype aiming to support
design of multi-target applications. However, the possibility of
identifying dependencies among tasks performed through different
platforms is not provided.
More generally, the issue of applying model-based techniques to
the development of UIs for mobile computers has been addressed
at a conceptual and research level [2], but there are still many
issues that need to be solved to identify systematic, general
solutions that can be supported by automatic tools. Our approach
aims to support design and development of nomadic applications
providing general solutions that can be tailored to specific cases,
whereas current practise is still to develop ad hoc solutions with
few concepts that can be reused in different contexts.

3. THE METHOD
Our method for model-based design is composed of a number of
steps that allows designers to start with an envisioned overall task
model of a nomadic application and then derive concrete and
effective user interfaces for multiple devices:

♦ High-level task modelling of a multi-platform application. In
this phase designers develop a single model, which addresses
the possible contexts of use and the various roles involved, and
also a domain model aiming to identify all the objects that have
to be manipulated to perform tasks and the relations among such
objects. Such models are specified using the ConcurTaskTrees
notation, which allows designers to indicate the platforms
suitable to support each task.

♦ Developing the system task model for the different platforms
considered. Here designers have to filter the task model
according to the target platform and, if necessary, further refine
the task model, depending on the specific device considered,
thus, obtaining the system task model for the specific platform.

♦ From system task model to abstract user interface. The goal
of this phase is to obtain an abstract description of the user
interface composed of a set of abstract presentations that are
identified through an analysis of the task relations. The
presentation part will be specified by means of abstract
interaction objects composed through various operators
(grouping, ordering, hierarchy, relation), which stand for
different composition techniques (for example, the grouping
operator will highlight the fact that there are objects which
should be grouped together because they are closely related to
each other). In order to support such transformations, we have
defined an XML format for the task model language and for the
abstract user interface language.

♦ User interface generation. This phase is completely
platform-dependent and has to consider the specific properties
of the target device. Then, every interactor is mapped into
interaction techniques supported by the particular device
configuration considered (operating system, toolkit, etc.), and
the abstract operators also have to be appropriately implemented
by highlighting their logical meaning: a typical example is the
set of techniques for conveying grouping relations in visual
interfaces by using presentation patterns such as proximity,
similarity and continuity.

4. TASKS AND NOMADIC APPLICATIONS
In our method we focus on models that can support development
of user interfaces while preserving usability, in particular, task
models specifying the different activities that are supposed to be
performed in an interactive system. Such models should be
developed involving users so as to represent how they prefer to
perform activities. The basic idea is to capture all the relevant
requirements at the task level and then be able to use such
information to generate effective user interfaces tailored for each
type of platform considered. Task models are represented by the
CTT notation that supports hierarchically structured models with
the possibility of providing a number of temporal and semantic
relations and attributes, thus allowing the description of flexible
behaviours.
When nomadic applications are considered designers should be
careful of the possible relations among tasks and the potential
platforms. In some cases the same tasks can be performed in the
same manner on different platforms, but often there are other
possibilities:
 It is not possible to perform the same task on another

platform;
 It is possible to perform the same task on another platform

but with different modalities;

 The performance of a task on one platform can enable or
disable the performance of another task on another platform.

To cope with these possibilities, we have designed and
implemented a new version of CTTE [4] that supports a number
of features; one of the most relevant is allowing designers to
specify for each task the set of platforms suitable to support it. For
example, you can see in Figure 1-(a) that the platforms suitable to
support the Show artwork info task are desktop and cellphone.
In addition, as far as the platforms are concerned, CTTE allows
designers to specify a further level of refinement: since tasks can
manipulate a number of objects, it is possible to specify the
suitable platforms even at the object level. An example is shown
in Figure 1-b: for example the description object is supported by
just the desktop platform and not by the cellphone, (although the
related task was supported by both platforms).
The result of this specification process is an integrated task model
where all the tasks supported by the concerned platforms are
specified. This is the main input of another feature of the tool that
automatically calculates the task model for each of the platforms
considered. Figure 2 shows how the CTTE tool supports filtering
according to the platform attribute: the designers are given the
possibility of selecting one platform from those that have been
specified within the whole task model (e.g. the radio button menu
items related to platforms other than desktop and cellphone have
been automatically disabled).

Figure 1. The specification of different platforms for each task

(a) and for each object manipulated by a task (b) in the
CTTEnvironment.

Once the user selects a specific platform, the tool derives the
resulting single-platform task model which can be saved
separately for further analysis and constitutes one of the inputs for
the TERESA tool. The platform-related system task model is
obtained by pruning from the model all the tasks that are not
relevant for the selected platform. The resulting model may have
inconsistencies that can be automatically detected and solved
through interaction with the designer.

Figure 2. An example of filtering the task model of a nomadic

application.

5. TERESA
TERESA is a transformation-based environment that supports the
design of an interactive application at different abstraction levels
and generate the concrete user interface for various types of
platform. In Figure 3 we show the main transformations supported
in TERESA, in terms of the XML-based representations that are
supported:

• Presentation sets and transitions generation. From the
XML specification of a CTT task model (“XML CTT Task
Model” module in Figure 3) it is possible to obtain the set of
tasks which are enabled over the same period of time according
to the constraints indicated in the model (enabled task sets).
Such sets, depending on the designer’s application of a number
of heuristics supported by the tool, are grouped into a number of
presentation sets and related transitions.

• From task model -related information to abstract user
interface. Both the XML task model and Presentation Sets
specifications are the input for the transformation generating the
associated abstract user interface (“XML AUI” module in
Figure 3). The specification of the abstract user interface, in
terms of both its static structure (the “presentation” part) and
dynamic behaviour (the “dialogue” part), is saved for further
analyses and transformations.

• From abstract user interface to concrete interface for the
specific platform. This transformation starts with the loading of
an abstract user interface previously saved for a and yields the
related concrete user interface for the specific interaction
platform selected. A number of parameters related to the
customisation of the concrete user interface are made available
to the designer.

• Automatic UI Generation. Through this option the tool
automatically generates the final UI, starting with the currently
visualised (single-platform) task model, and using a number of
default configuration settings related to the user interface
generation.

Figure 3. The main transformations in TERESA in terms of
XML-based specifications supported.

6. THE TERESA ABSTRACT USER
INTERFACE XML LANGUAGE
In this section we provide the general description of the XML
TERESA language for abstract user interfaces and then we
describe the structure of the language through the most relevant
parts of its DTD.

6.1 General Description of the Language
The abstract user interface is mainly defined by a number of
presentations defining its static structure, and a number of
transitions defining how the user interface evolves over the time.
Each presentation is constituted of a set of interactors composed
through a number of different operators. For the moment we have
identified a number of composition operators that capture typical
effects that user interface designers actually aim to achieve [5]:

• Grouping (G): the idea is to group together two or more
elements, so this operator should be applied when the
involved tasks share some characteristics. A typical situation
is when the tasks have the same parent (they are activities
needed to perform a high level task). This is the only
operator for which the position of the different operands is
irrelevant.

• Ordering (O) operator: it is applied when some kind of order
exists amongst elements. The more intuitive one is the
temporal order. The order in which the different elements
appear within this operator reflects the order that holds
amongst them.

• The Relation (R) operator should be applied when a relation
exists between n elements yi, i=1,…, n and one element x.
Referring to the task model, a typical situation is when we
have a leaf task t at the right side of a disabling operator: all
the tasks that could be disabled by t (at whatever task tree
level) are in relation with t. Again, also this operator is not
commutative.

• The Hierarchy (H) operator means that a hierarchy exists
amongst the involved interactors. It is the importance level
associated with the operands that identifies the prominence
degree that the associated interaction objects should have
within the user interface. In order to convey this information,
various techniques could be used. In graphical user interfaces
one example is allotting within the screen a larger area to
objects which are hierarchically more ‘important’.

Once the static arrangement of the abstract user interface is
identified, also its dynamic behaviour has to be specified, by
means of the so-called transition tasks, which are tasks whose
execution makes the abstract user interface pass from the current
presentation into another presentation.
In the next section we will describe more in depth how all those
components have been specified in the related DTD of TERESA
AUI language.

6.2 The DTD of the TERESA AUI Language
This language can be used for specifying how the various Abstract
Interaction Objects (AIO) composing the UI are organised,
together with the specification of the dialogue of the UI. For
semplicity, we consider and comment just the most relevant parts
of TERESA AUI DTD.
The root of the document is the interface object. An interface is
composed of one or more objects of type presentation:
<!ELEMENT interface (presentation+)>

Each presentation has two parts: the first part (connection) is
related to the dynamic behaviour of the presentation, the second
one (structure) is related to the static arrangement of the elements
(namely, AIOs) composing the presentation itself. For each
presentation, we can have zero, one or more objects of type
connection, with each connection mainly identifying the
presentation element whose activation allows the interface to
move to a different presentation. The structure part mainly
describes the static arrangement of the different objects within the
presentation itself:
<!ELEMENT presentation (connection*, structure)>
<!ATTLIST presentation name ID #REQUIRED>
Each connection has two attributes: an interaction_aio_id, which
defines the interaction object whose performance triggers the next
presentation which is identified in turn by the presentation_name
attribute:
<!ELEMENT connection EMPTY>
<!ATTLIST connection
 interaction_aio_id IDREF #REQUIRED
 presentation_name IDREF #REQUIRED>
Each structure element can be either an elementary abstract
interaction object (aio) or a composition of them
(aio_composition) through the various operators defined in the
abstract language:
<!ELEMENT structure (aio | aio_composition)>
Each aio_composition is the composition of one operator defined
in the language (grouping, ordering, relation, hierarchy) with a
number of expressions which can be, in turn, either elementary
interaction objects or complex expression of such elementary
objects. Note that the second_expression tag is only used when
the concerned operator is the relation: in this case we have to
model a N:1 relation, so the second_expression tag is used to
identify precisely the element which the other N elements are in
relation with.
<!ELEMENT aio_composition (operator, first_expression+,
second_expression?)>
<!ELEMENT operator EMPTY>
<!ATTLIST operator name (grouping | ordering | relation
| hierarchy) #REQUIRED >
<!ELEMENT first_expression (aio | aio_composition)>
<!ELEMENT second_expression (aio | aio_composition)>
Each aio can be either an interaction object (interaction_aio) or
an application object (application_aio). In any case, it is

univocally identified within the presentation by means of the id
attribute.
<!ELEMENT aio (interaction_aio | application_aio)>
<!ATTLIST aio id ID #REQUIRED>
Each interaction_aio defines an abstract interaction object which
implies an interaction between the user and the application. It can
be of different types depending on the type of task supported, for
example: selection_aio, if the object supports selection from a set
of elements; edit_aio, if it supports editing an object, control_aio
if it allows triggering an event within the user interface. Each
selection_aio can be of different type, depending on the number
of elements that will be selected. If the element allows a single
choice, there are a number of options depending on the cardinality
(low/medium/high) of the set which the element will be selected
from. The same holds in case of multiple choice.
Another type of interaction object is the edit_aio, which can be of
different types, depending on the type of object that will be edited
(such as text, graphic, numerical quantity or position). The last
type of interaction object is control_aio, which is mainly
associated with interaction objects able to trigger a particular
event within the user interface.
Differently from an interaction_aio, an application_aio defines an
abstract application object which implies an action only from the
application. Each application_aio can be associated with different
types depending on the type of output the application provides to
the user: a textual output, a graphical output, an image, a feedback
about a particular state of the user interface.

7. HOW DESIGNERS CAN INTERACT
WITH TERESA
One of the main goals in the design of TERESA is to provide a
flexible environment for designers following a mixed initiative
paradigm. The environment supports designers according to
various possible requests of use: there are cases when the designer
wants to have as much automatic support as possible, in other
cases they may want to change some general design assumptions,
while in yet others, they want to have full control in order to
modify all the possible details in the design process.
An example of the levels of control available in TERESA for
designers is the possibility of selecting the specific
communication technique to be used for implementing each
interactor composition operator. The tool can provide suggestions
according to predefined design criteria, but developers can modify
them: for example, they can decide to implement the grouping
operator by means of a fieldset, the hierarchy operator through
different font styles, the ordering by means of an ordered list, and
the relation operator by means of a form. Once a designer selects a
specific type of communication technique, its preview is
highlighted in order to facilitate the understanding of the main
characteristics of the resulting design.

Figure 4. Panel for selecting the implementation of each

operator of abstract language.
Figure 4 shows how the designer can see the result of the
prototyping process. Some control panels are provided to
designers in order to change some parameters and an overall
summary table is provided by the tool in order to allow designers
to understand the design criteria currently applied (an example is
shown in Figure 5).

Figure 5. Moving from abstract user interface to concrete user

interfaces for mobile phones.

The different platforms currently considered allowed us to identify
a number of differences between the design for desktop and for
mobile applications. For example, as you can see from Figure
6(top)-(bottom), the same grouping operator has been
implemented with different techniques depending on whether the
desktop or the mobile platform is considered.

Figure 6. (top) Grouping techniques for desktop platform;

(bottom) Grouping techniques for mobile platform.
In fact, on the one hand the desktop environment allows the use of
tables, so the grouping operator can be implemented by a number
of techniques including both unordered lists by row and
unordered list by column (apart from classical grouping
techniques like fieldsets). On the other hand, the small capability
of a mobile phone does not allow implementing the grouping

operator by using an unordered list of elements by column (see
figure 6-bottom), then this technique is not available on this
platform.
Other differences regarding the environments related to each
platform can be found for the hierarchy operator: in the desktop
environment, the hierarchy operator can be effectively
implemented by varying the space allotted to the different objects
in the presentation (for graphical user interfaces) or varying the
size of text if a textual aio is considered. Neither of them can be
used in the mobile environment respectively because in the first
case the small area of cellphones does not allow to consider this
dimension and, in the second case, the limited capability of the
device does not allow the designer to vary too much the
dimension of the text without compromising the quality of the
result.
In addition, other differences can be found between the
implementation of the various operators between the two
platforms, for example in the global parameters that are made
available to designers for customising the user interface: in the
desktop system parameters such as the background picture, the
colour of the text, etc. are available, whereas in some cellphone
systems they cannot be supported due to the limited capabilities of
the considered device.

8. AN EXAMPLE OF APPLICATION
In this section we will show a sample example of application of
the described approach, by considering a museum application. In
this domain, the user is supposed to be able to perform a number
of activities concerning accessing museum and artwork
information, ticket booking, etc. For this example two main
platforms have been taken into consideration, a cellphone and a
desktop platform, and the related task model has been specified.
Once that the integrated task model has been specified, the first
step is to apply the filtering so as to obtain the related task model
for each platform considered. For example, if we focus on the
Showing_artwork_info task, the resulting task models are shown
in Figure 7(a)-(b) below.

Figure 7. The task Showing_artwork_info after having applied
the filter for the desktop environment (a) and for the mobile

one (b).

As you can see, at the task level, in the mobile platform the task
allowing access to a review (Reading_review) has been pruned
from the tree. At the object specification level, an example of
differences among the supporting platforms has already been
shown in Figure 1.

Once the task models of both cellphone and desktop platforms are
obtained, the process evolves into two parallel, separate tracks,
one for each platform.
For example, the expression of the abstract user interface in the
desktop environment is R(H(show_artwork_info, show_section),
G(Access_to_list_of_works, Read_review), which means that at
the highest level there is a relation operator which puts in relation
a hierarchal composition of two elements with a grouping of two
other objects. It is worth noting that in the previous example, for
simplicity we put the task name instead of the corresponding aio
name. However, whenever a task manipulates a number of
objects, a grouping composition involving the manipulated
objects is generated in the abstract user interface.
Once this expression for the abstract user interface is generated
for the desktop environment, the tool provides designers with the
possibility of changing some parameters for the user interface
generation process. Apart from the possibility of setting some
global parameters, the designer can select a specific technique to
implement a specific abstract interaction object, if that suggested
by the system is not considered the most suitable one.
In Figure 8-a you can see the resulting user interface in the case of
desktop device, whereas in the part (b) of the figure the
correspondent user interface in the case of a mobile device is
shown. We note that in the desktop environment not only a larger
number of domain objects are shown, but also additional tasks are
available (for example the possibility of accessing a review of the
artwork).

Figure 8. Resulting user interface of the example in the
desktop environment (a) and in the mobile one (b).

9. CONCLUSIONS
We have presented a tool supporting design and development of
nomadic applications. It allows designers to provide the results of
conceptual analysis in terms of tasks and their relations and
support user interface generation while taking into account the
characteristics of the platform considered. Designers have
different levels of control over the development process.
The tool is publicly available at
http://giove.cnuce.cnr.it/teresa.html
While the current TERESA version supports the design and
development of graphical interfaces for various platforms, further
work will be dedicated to support multimedia interfaces for a
broader set of mobile devices including vocal interaction
techniques.

10. ACKNOWLEDGMENTS
We gratefully acknowledge support from the European
Commission through the CAMELEON IST project
(http://giove.cnuce.cnr.it/cameleon.html).

11. REFERENCES
[1] Abrams, M., Phanouriou, C., Batongbacal, A., Williams, S.,

Shuster, J. UIML: An Appliance-Independent XML User
Interface Language, Proceedings of the 8th WWW
conference, 1999. Available at
http://www.harmonia.com/resources/papers/www8_0599/ind
ex.htm

[2] Einsenstein, J., Vanderdonckt, J., Puerta, A. Applying
Model-Based Techniques to the Development of UIs for
Mobile Computers, Proceedings IUI'01: International
Conference on Intelligent User Interfaces, pp 69-76, ACM
Press, 2001.

[3] Myers, B., Hudson, S., Pausch, R. Past, Present, Future of
User Interface Tools. Transactions on Computer-Human
Interaction, ACM, 7(1), March 2000, pp. 3-28.

[4] Mori, G., Paternò, F., Santoro, C., CTTE: Support for
Developing and Analysing Task Models for Interactive
System Design, IEEE Transactions on Software Engineering,
pp. 797-813, August 2002 (Vol. 28, No. 8).

[5] Mullet, K., Sano, D., Designing Visual Interfaces. Prentice
Hall, 1995.

[6] Paternò, F., Model-Based Design and Evaluation of
Interactive Application. Springer Verlag, ISBN 1-85233-
155-0, 1999.

[7] Paternò, F., Santoro, C., One Model, Many Interfaces,
Proceedings Fourth International Conference on Computer-
Aided Design of User Interfaces, pp. 143-154, Kluwer
Academics Publishers, Valenciennes, May 2002.

[8] Puerta, A., Eisenstein, J., Towards a General Computational
Framework for Model-based Interface Development Systems,
Proceedings ACM IUI’99, pp.171-178.

[9] Puerta, A., Eisenstein, XIML: A Common Representation for
Interaction Data, Proceedings ACM IUI’01, pp.214-215.

[10] Rich, C., Sidner C., COLLAGEN: A collaboration manager
for software interface agents, User Modelling and User-
Apadted Interaction, 1998, 8(3/4), pp.315-350.

[11] Szekely, P., Sukaviria, P., Castells, O., Muthukumarasamy,
J., Salcher, E., Declarative Interface Models for
UserInterface Construction Tools: the MASTERMIND
Approach. In Engineering for Human-Computer Interaction,
L.J. Bass and C. Unger (eds), Chapman & Hall, London,
1995, pp 120-150.

[12] Thevenin D., ARTStudio; Tool for Multi-target UI Design,
Poster at UIST 2002, Paris.

