Chapter 29 ®)
User Interface Adaptation oo
for Accessibility

Sergio Firmenich, Alejandra Garrido, Fabio Paterno and Gustavo Rossi

Abstract In this chapter, we discuss methods and tools for adapting user interfaces
to make them more accessible. We introduce the problem of user interface adaptation
and characterize different techniques to be adapted to the user interface. We show
that there is a broad range of methods and tools to transform existing interfaces to
make them accessible. We describe such approaches by grouping them in two types
of solutions: those that provide built-in adaptation mechanisms for the application
and those which are external to the application.

29.1 Introduction

Adapting a user interface (UI), for example, to make it accessible, implies changing,
or adjusting its structure, contents, and/or available actions according to the users’
current goals and abilities (including the context of use). This adaptation may be
initiated and controlled by the user, or built-in in the application itself or performed
by a third party (not the user, not the original application).

The need for Ul adaptation has been recognized by Edmonds since the early
80s (Edmonds 1982). The traditional idea that one system fits all is antagonistic
toward the special needs or preferences of different users. Even the same user may
change her ability regarding the task she performs with the system, and the interface
should evolve (adapt) accordingly. Edmonds also introduced the concept of dynamic

S. Firmenich - A. Garrido - G. Rossi ()

LIFIA, Facultad de Informatica, Universidad Nacional de La Plata and CONICET,
50y 120 s/n, La Plata, Argentina

e-mail: gustavo@lifia.info.unlp.edu.ar

S. Firmenich
e-mail: sfirmenich @lifia.info.unlp.edu.ar

A. Garrido
e-mail: garrido@lifia.info.unlp.edu.ar

F. Paterno
CNR-ISTI, HIIS Laboratory, Via G. Moruzzi 1, 56124 Pisa, Italy
e-mail: fabio.paterno@isti.cnr.it

© Springer-Verlag London Ltd., part of Springer Nature 2019 547
Y. Yesilada and S. Harper (eds.), Web Accessibility, Human—Computer
Interaction Series, https://doi.org/10.1007/978-1-4471-7440-0_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-4471-7440-0_29&domain=pdf
mailto:gustavo@lifia.info.unlp.edu.ar
mailto:sfirmenich@lifia.info.unlp.edu.ar
mailto:garrido@lifia.info.unlp.edu.ar
mailto:fabio.paterno@isti.cnr.it
https://doi.org/10.1007/978-1-4471-7440-0_29

548 S. Firmenich et al.

adaptation or self-adaptive interfaces, i.e., those which do not need the intervention
of the developer or the user to perform the adaptation.

We are accustomed to different degrees of adaptation in the interfaces we regu-
larly use. A simple example is the Windows start menu, which changes its contents
dynamically according to the most (recently) used applications. Amazon adapts the
contents presented to each user in relation to their browsing and shopping story,
adjusting the recommended products in their home page and in every sub-store. It
also adapts forms (e.g., to perform the check-out process) according to the informa-
tion it has about the user (e.g., frequently used address, check-out preferences, etc).
Email applications (Google, Yahoo, etc) let end-users change the structure, look and
feel, and available operations of their site.

When dealing specifically with accessibility, different factors might impact on
the need to adapt the UL In the past, research work has focused on user-related
factors such as perceptual skills, motor or sensing abilities, preferences, emotional
state, cultural and education issues, in addition to the ability of the application to
support users in their task, and afford to adapt regarding the user acquired experience.
However, the emergence of mobile computing and the possibility of using application
software in different contexts brought other factors into consideration such as those
related with technology (screen resolution, connectivity, battery life, etc.) or the
environment (location, noise, etc) (Paterno 2013). In any case, just considering the
myriad of different requirements for accessibility related to specific motor or sense
abilities let us conclude that adaptation is a must.

There are many considerations to take when building adaptation in interfaces for
accessibility, and many dimensions to classify them. We next summarize some of
the most important topics related to the general problem of adaptation, and the rest
of the chapter will discuss some of the peculiarities of each approach.

e Who configures the adaptation: There may be coarse-grained interface variants,
for example, for a particular disability, which is configured during design time.
Alternatively, the interface may be self-adaptive, i.e., it learns about the user’s
needs dynamically, or the user may configure the adaptation herself.

e Whatis adapted: According to Brusilovsky (2001), a Web interface may be adapted
regarding its structure, contents, and/or links. We may refine this coarse-grained
classification considering, for example, what is adapted regarding the contents’
presentation: it may be its media transforming text into audio (as in screen readers)
or other properties such as size and colour (of text or images), volume (audio), etc.

e How we represent the user model: A critical issue is the representation of the
systems knowledge about the user and her context, including preferences, abili-
ties, device, environmental context, social context, etc. This representation must
be expressive enough to capture all the information needed to perform the adap-
tation, and it must be dynamic in terms of both the information and its structure.
Additionally, the user model may be deduced from the users actions or built by
the user by configuring some options.

e When adaptation occurs: Assuming that the interface changes automatically in
response to its experience with users, we must decide the rhythm of change. This

29 User Interface Adaptation for Accessibility 549

decision is not minor since, for example, changing too often might affect stability
of the interface and therefore comprehension and usability.

e Where adaptation occurs: The adaptation may occur inside the system or may be
external and performed by a third party or application built explicitly to fulfill this
purpose.

Each one of these issues requires more than a book chapter, but for the sake of
clarity and conciseness, we will address only some of them and provide pointers
to others. The next section introduces a classification of User Interface Adaptation
types, which includes a brief revision of existing literature.

29.2 Classifying Adaptive Interfaces

There are many different classifications in the literature for UI adaptation. One of
them distinguishes between adaptable versus adaptive systems (Stephanidis and
Savidis 2001). In the case of adaptable systems, end users have the capability to
adapt the Ul to their needs, i.e., users are in control of the adaptation, whereas adap-
tive systems have internal mechanisms to directly perform the adaptation, with little
or no control from users. Other classifications exist that categorize the involvement of
the user versus system at different stages of the adaptation, like Dieterich’s taxonomy
(Dieterich et al. 1993) and the recent PDA-LPA taxonomy (Bouzit et al. 2017), which
provides a fine-grained characterization of end-user involvement versus system self
management with respect to Perception, Decision, Action, Learning, Prediction, and
Adaptation.

While the above are relevant classifications, they tend to leave out coarse-grained
architectural differences that have appeared with recent technological innovations. A
similar argument can be made about McKinley’s taxonomy (McKinley et al. 2004),
which considers three dimensions: How to adapt, Where to adapt, and When to
adapt, but does not provide insight into the design and implementation of different
adaptation techniques (Bouzit et al. 2017).

Another classification divides adaptive systems from the point of view of the
development approach, in window managers and widget toolkits on the one hand,
and model-driven engineering on the other hand (Akiki et al. 2014). Thus, this clas-
sification misses adaptive frameworks. Furthermore, although several approaches
exist to create adaptive Web applications for accessibility, other approaches have
emerged to allow users to adapt their preferred Web applications even beyond what
these applications support.

550 S. Firmenich et al.

2nd dimension

A

Methods

Architectures

Techniques

1st dimension

Internal Adaptations External Adaptations

Fig. 29.1 Classification of user interface adaptation for accessibility

Based on the above discussion, we propose a classification structured into two
dimensions (see Fig. 29.1). First, a coarse-grained partition between two broad types
of adaptations:

e Those which are built in the original system, together with those that may be added
because the original system provides some infrastructure to allow for new adapta-
tions. In general, we may say that these are adaptation-aware systems, because the
system was constructed to be able to perform some adaptations. Instances of this
category are model-driven adaptive systems. We call them Internal Adaptations.

e Those which are external to the system, i.e., the original developers did not create
a system with adaptation capabilities but the system is adapted from the outside by
third-party software artifacts, or with techniques that intervene at a later stage, from
which the Web application is unaware. Instances of these techniques are transcod-
ing (Asakawa and Takagi 2008), augmentation (Bigham 2007), and refactoring
(Garrido et al. 2013). We call them External Adaptations.

The second dimension in our classification aims at characterizing the different
approaches in each partition with a finer grained definition with regard to:

o the technique by which the adaptation mechanism is activated;
o the architecture that establishes adaptation mechanism constraints;
o the method for developing the adaptation.

The next two sections analyze, correspondingly, internal and external Ul adapta-
tion approaches for improving or supporting Web applications accessibility.

29 User Interface Adaptation for Accessibility 551

29.3 Internal Approaches for UI Adaptation

There has been a number of interesting contributions in the area of methods and tools
for accessible Uls adapted to people with various disabilities. This is an important area
since there are many people with disabilities that can only access their applications
through assistive technology, and they need adapted versions of their applications in
order to accomplish their tasks with them.

29.3.1 Techniques

There are two main types of techniques to activate internal adaptations: tailored
application versions and rule-based adaptive solutions. The former is mainly used at
design time or at the beginning of a user session so that users (in some cases with the
support of developers) can directly select one of the versions available or configure
the desired version. The latter is more often used to obtain adaptive solutions where
the applications modify some parts depending on dynamic contextual events, whose
occurrence trigger specific rules that can change UI aspects. We can add a further
technique: context-aware (Run-time adaptivity, system-initiated), which is related to
run-time adaptivity, i.e., the context and all user activities are captured as the user
interacts with the system, and the system acts accordingly.

29.3.1.1 Tailored User Interfaces

One of the first contributions in this area has been the result of the AVANTI project
(Stephanidis et al. 1998), which aims to adapt Web applications in terms of content,
navigation, and presentation for people with disabilities. It classifies users to different
stereotypes, and, accordingly, it presents optional content and chooses appropriate
information from alternatives.

In model-based approaches (Paternd 2005), the basic idea is to start with logi-
cal descriptions and then derive implementations for the target platforms and users.
In the human—computer interaction area, the CAMELEON reference framework
(Calvary et al. 2002) was introduced to distinguish the various possible abstraction
levels in describing Uls: task and domain models, abstract Uls (the interaction is
described independently from the possible modality used), concrete Ul (the interac-
tion is described dependent of some specific modalities but independent of specific
implementation languages). The Supple system (Gajos et al. 2006) is an example of
model-based system. It has focused on automatically generating Uls at design time
for people with disabilities from logical descriptions taking into account device, tasks,
preferences, and abilities. The UI generation is organized as a discrete optimization
problem solved by using a branch-and-bound algorithm. The Supple authors focused
on how to exploit Supple in order to support disabled users, for example, by auto-

552 S. Firmenich et al.

matically generating Uls for a user with impaired dexterity based on a model of
her actual motor abilities. The authors have carried out laboratory experiments that
indicate positive results in terms of speed, accuracy, and satisfaction of users with
motor impairments.

A different approach has been adopted in The Global Public Inclusive Infrastruc-
ture (GPII), proposed by Vanderheiden and Treviranus (2014), which is an infrastruc-
ture aimed at automatically providing disabled users with solutions able to enhance
their interaction with different public services. For instance, someone needing to
access an inaccessible service, in a specific moment and in a concrete place, can
obtain an accessible interface from GPII. To accomplish this process, users store
their preferences in a local device or in the cloud. Subsequently, they carry out the
login process wherever they are and GPII provides them with a tailored UI and the
required assistive technologies. This seems useful but limited support since it can
just provide access to a few predefined versions or configurations of the application,
while the wide variety of possible user characteristics and preferences as well as
contexts of use call for more flexible adaptations, which should be able to provide
changes in the UI at various granularities.

29.3.1.2 Rule-Based Adaptation

In rule-based approaches, the rules generally indicate some events or conditions that
should trigger the consequent adaptation. Mifién et al. (2016) have investigated how to
exploit such rules in the model-based generation of accessible Uls. The adaptations
can be applied in any of the CAMELEON abstraction levels at design time. For
instance, adaptation rules related to task sequencing should be considered at the task
and domain level, whereas adaptation rules related to some specific Ul modalities
have to be considered at the concrete UI level. At run-time, the solution proposed
involves obtaining the necessary level of abstraction by means of an abstraction
process in order to apply adaptation rules when a change in the context occurs, and
then generate again the final Ul Ghiani et al. (2014) have put forward a proposal
for obtaining run-time adaptation able to support dynamic reverse engineering of
Web pages in order to obtain their model-based description, and then generate an
implementation using different modalities more suitable for the new context of use.
Yang and Shao (2007) have introduced the use of an expert system, JESS (Java
Expert System Shell), in managing the adaptation rules. It uses a special algorithm
called Rete to match the rules to the facts, which should be faster than a simple set of
cascading “if. . .then” statements in a loop. A JESS rule is defined in such a way to
trigger actions after matching knowledge base patterns. The adaptation knowledge
base consists of a fact base, i.e., context profiles, and a rule base, i.e., adaptation rules.
W3Touch (Nebeling et al. 2013) has not used model-based languages for supporting
Web pages adaptation. For this purpose, it considers user interaction, in particular,
the occurrence of missed links or frequent zooming as indicators of layout issues,
however the adaptation rules supported do not consider the use of multimodality.
In this case, the adaptation rules can be defined based on the logged events and

29 User Interface Adaptation for Accessibility 553

may only be restricted to specific devices and viewing conditions. The possibility of
using rules to specify the desired adaptations has raised interest in environments able
to support the specification of such rules even by people who are not professional
developers. An example of tool addressing this topic is TARE (Ghiani et al. 2017)
that aims to provide an easy to understand way to specify contextual events and
conditions as well as the corresponding actions, which can modify the application
or even the state of surrounding appliances (e.g., lights, radio). This tool has been
used in projects aiming to support elderly, thus giving them or their caregivers the
possibility to personalize their applications according to specific situations.

29.3.1.3 Context-Based Adaptation

The increasing availability of various types of sensors, both personal and environ-
mental sensors, has made it possible to detect useful information concerning the
context of use in which users are interacting with the application, and then adapt
the UT accordingly. The possible contextual aspects can involve the user (the tasks
to perform, the emotional state, the current disabilities, etc.), the environment (e.g.,
light, noise, position), and the technologies (the available devices, appliances, and
objects). Such technological evolution has also stimulated the development of solu-
tions exploiting multimodal Uls, in which the adaptation can involve different com-
munication channels between the user and the system. An example of accessible
solution in this area is provided by Ghiani et al. (2009), who support the blind by
exploiting the haptic channel as a complement to the audio/vocal one. It includes
vibrotactile feedback enhancement for orientation and obstacle avoidance obtained
through the use of unobtrusive actuators applied to two of the user’s fingers com-
bined with an electronic compass and obstacle detector sensors connected wirelessly
to the mobile device. The user localization is obtained with the support of RFID
tags associated with objects of interest. Later, Ahmetovic et al. (2016) proposed
a smartphone-based system that provides turn-by-turn navigation assistance based
on accurate real-time localization over large spaces. In addition to basic navigation
capabilities, the NavCog system also informs the user about nearby points-of-interest
(POI) and accessibility issues (e.g., stairs ahead). For this purpose, the system makes
use of a network of Bluetooth low energy (BLE) beacons to localize the user with
an approach based on the K-nearest neighbor (KNN) algorithm.

In this perspective, Hussain et al. (2018) support rule-based adaptivity by collect-
ing real-time data from multimodal data sources, e.g., smartwatch, mobile phone,
camera, Kinect. It aims to generate the Ul at runtime, without redeploying the sys-
tem, and with the help of authoring tools, new rules are added without affecting
the running system. Additionally, the adaptation on UI is made when the context is
changed, which is observed by implicit and explicit (user feedback) ways. It also aims
to receive user feedback: the implicit feedback is acquired from the user behavioral
responses, which are collected automatically when users interact with the system,
while the explicit feedback is acquired through questionnaires. However, currently
the rule authoring is able to manage only basic-level adaptation rules.

554 S. Firmenich et al.

29.3.2 Architectures

The support for adaptation can be obtained through different architectures. According
to Sottet et al. (2007), a system is close-adaptive when adaptation is self-contained. It
supports the innate adjustments planned at the design stage as well as new adjustments
produced by its own internal learning mechanisms. The system is open-adaptive if
new adaptation plans can be introduced during run-time. Thus, in close-adaptive sys-
tems rules are prefixed. Adaptation rules are designed at development time. When-
ever a new rule is to be added, the system needs to be redeployed. This is the case
for MyUI (Peissner et al. 2012) in which relevant interaction patterns are identified
for the target users and devices, but if the targets change then the UI parametriza-
tion and preparation needs to be performed again before deployment. In order to
obtain more open solutions, Mifién et al. (2016) propose an architecture in which
there is an autonomous Adaptation Integration System, which applies adaptation
rules to model-based descriptions of the interactive application. The rules consider
user disability (cognitive impairment, motor impairment, deafness, etc.) and various
granularity levels (single element, group element, presentation, application). Lastly,
the adapted Ul is generated. The resulting adaptation process tends to be slow and
not very flexible. An efficient and flexible architecture for open-adaptive solution
is presented by Ghiani et al. (2017). It is based on rules repositories and a middle-
ware able to detect dynamic events in the context of use. Adaptation rules associated
with a given application can be added and executed at any time. They are provided
to an architectural component called adaptation engine in a trigger-action format.
The adaptation engine subscribes to the underlying middleware (Context Manager)
in order to be notified when relevant events occur. In this case, the corresponding
actions are transmitted to the application for actually performing the desired adap-
tation to its UI or the state of some connected appliances. This type of architecture
has then also been adopted in Hussain et al. (2018), which also considers the use of
models for context, user, and device. In this approach, in the offline phase of adaptive
UI design, all the relevant models are built and the adaptation rules are generated
using a rule authoring tool. The created rules subscribe to the relevant events in a
context evaluator. Then, the monitoring module is responsible for data collection
while user is interacting with the system through different sensors and trackers (e.g.,
facial, vocal, eye, and analytics). The evaluator component evaluates the acquired
information and decides whether adaptation is required on the UI or not.

29.3.3 Methods

In this section, we discuss the methods proposed for development of adaptable Uls
for accessibility. A first distinction can be made between approaches using some
model-based descriptions of the UI and framework working directly on the Web
implementation.

29 User Interface Adaptation for Accessibility 555
29.3.3.1 Model-Based Methods

In model-based methods, we can distinguish two types of approaches: static and
dynamic. In static model-based approaches, there is the possibility to provide some
relevant model-based description and then generate the implementation version for
the target users. In the dynamic approaches, the use of models can be updated accord-
ing to some contextual dynamic change in order to obtain updated implementation
without having to deploy again the application. Examples of the static approaches are
MARIAE (Paterno et al. 2011) and Supple (Gajos et al. 2006). Supple automatically
generates Uls, taking as inputs device-specific constraints, such as screen size and
a list of available interactors, a typical usage trace, a functional specification of the
interface, which describes the types of information that need to be communicated
between the application and the user, and a cost function. The goal is to automatically
generate, ability-based Uls that should significantly improve speed, accuracy, and
satisfaction of users with motor impairments compared to manufacturers’ default
interfaces. Mifi6n et al. (2016) propose to make the model-based development more
open to dynamic environments. The basic idea is that when some dynamic contextual
change occurs, a model-based description is provided to an adaptation integration
system, which is able to access a repository of adaptation rules, apply them to the
model-based description, which is then passed again to the tool for model-based
implementation generation. A solution aiming to obtain adaptation in terms of inter-
action modalities with the support of model-based descriptions is proposed by Ghiani
etal. (2014). The goal is to overcome some limitations of responsive design (Marcotte
2011), which is able to consider only changes in device resolution and orientation
and supports only graphical Uls. An approach aiming to obtain dynamic adaptation
with the support of models is in Hussain et al. (2018). It considers context, user, and
device models. It needs an offline phase during which all the relevant models are
built and the adaptation rules are generated using a rule authoring tool. The rules are
then applied during actual use of the application.

29.3.3.2 Framework-Based Methods

Current frameworks (for example, Bootstrap) mainly provide support for adapta-
tion according to the responsive design approach, which support adapting to various
device features through fluid layout and stylesheets. They also provide the possi-
bility of associating various visual attributes with groups of devices identified by
some features detected through media queries. However, such adaptations are too
limited for supporting accessibility because they do not consider the many types of
contextual events that can influence user interaction and the various possible user
disabilities. The context toolkit (Salber et al. 1999) was among the earliest supports
for developing context-enabled applications by providing a library to facilitate inte-
gration with sensors. It initially considered a limited set of events and led to meld the
context awareness code with the application. Later, the Context Toolkit has been aug-
mented with support to facilitate development and debugging of context-dependent

556 S. Firmenich et al.

applications (Dey and Newberger 2009). However, such approaches mainly refer to
providing changes in the appliances states as a consequence of the detected events,
and pay little attention to UI adaptations. W3Touch is an interface instrumentation
toolkit for web designers to collect user performance data for different device charac-
teristics in order to help them identify potential design problems for touch interaction.
Web designers can visualize the data aggregated by W3Touch and use simple met-
rics to automate the adaptation process for many different viewing and interaction
contexts. Thus, it provides a more flexible support but still without considering acces-
sibility issues with particular attention. To facilitate the development of frameworks
able to address such issues the W3C has developed the WAI-ARIA standard (WAI-
ARIA (W3C) 2019), which helps with dynamic content and advanced UI controls
developed with Ajax, HTML, JavaScript, and related technologies. Further aspects
about dynamic content concerning accessibility may be found in chapter “Dynamic
Web Content” in this book.

29.4 External Approaches for UI Adaptation

This category, as explained earlier, belongs to approaches for adapting a system
from the outside, i.e., the target system is unaware of the adaptations. The benefits
of these approaches are mainly that they may be applied to any Web system, i.e.,
the system does not need to be constructed in any particular way or depending on
any infrastructure (which simplifies development) and often provide the final users
with the possibility to control the adaptation and personalize it. In the context of
accessibility, however, users controllability may not always be an advantage, since
depending on the disability, it may require the assistance of third persons, like family
members or caregivers. Adapting third- party Web contents is an old idea that has
been applied in very distinct ways, and may involve end-users alone or contemplate
a volunteer role.

29.4.1 Techniques

In this section, we will talk about two mainstream techniques for manipulating exist-
ing and third-party Web content: traditional transcoding and client-side adaptation.

Both client-side adaptation and transcodings are very powerful and have been
applied with very similar goals in some approaches, while very different in oth-
ers. Even the terms are used indistinctly sometimes and also combined, such as
client-side transcoding, or browser-side transcoding (Diaz and Arellano 2015). Orig-
inally, transcodings systems were defined as those that transcode a resource before
it is delivered to their target client (Asakawa and Takagi 2008). Once the resource
(mainly an HTML page together with CSS and JavaScript) is delivered to the client,
it behaves as usual, meaning that even if the Web content was adapted (transcoded)
by an intermediary server, once it is loaded and rendered on the Web Browser, it is
still a normal Web site, and the adaptation mechanisms are restricted to this situa-

29 User Interface Adaptation for Accessibility 557

tion. Client-side adaptation approaches, on the other hand, manipulate the content
after it is loaded and rendered in the client, because these techniques manipulate
the actual DOM that Web browsers create for the loaded HTML pages. Client-side
approaches bring new opportunities in comparison with intermediary servers. This
architectural difference (architectural aspects for external adaptation approaches are
discussed on Sect.29.4.2), directly impacts on how the adaptation mechanisms are
defined and triggered, and subsequently on how easy it is to apply some adaptation
technique/method. With this in mind, we separate this subsection into transcoding
systems and pure client-side adaptation. For each of these techniques for manipulat-
ing existing Web content, we discuss their main uses and scope.

29.4.1.1 Transcodings

The problem of improving accessibility by adapting third-party Web content was first
tackled by approaches inspired in transcoding systems. Transcoding was defined as
a system that transforms content or a program on the fly at an intermediary server,
resulting in other formats; this served, for instance, to change the content encoding
on the fly using a proxy (Asakawa and Takagi 2008). The same idea of using an inter-
mediate server to manipulate existing content was applied to improve accessibility of
third-party websites. According to Asakawa and Takagi (2008), transcodings meth-
ods (text magnification, content reorder, page simplification, etc.) are applicable on
an intermediary server (proxy) and also directly at client-side by using client-side
adaptation scripts. In the same article, Asakawa established two main techniques for
transcodings, which are the use of annotations and simplification based on differential
analysis.

Basically, these accessibility transcodings act like transformation functions that,
once a target Ul element is specified, apply a transformation method. Content anno-
tation was and still is a widely used technique for deciding which transformation
method to apply over which UI elements for a given Web page. Approaches around
this idea were very well described in a previous chapter focused specifically on
transcodings (Asakawa and Takagi 2008). Since that time, there have been new
works on transcoding tackling different problems. For instance, some works have
explored other ways to do annotations via CSS. Other works have taken advantage
of the collaborative nature of annotation-based systems, which allows a whole com-
munity of end-users to create and share annotations (Takagi et al. 2008, 2009). In
some cases, these kinds of approaches may involve a volunteer role, coined to create
the annotations when these require some technical skill.

Web applications became more complex at client-side, for instance, by incorporat-
ing asynchronous content load and later RIA concerns. In the context of Accessible-
Rich Internet Applications (ARIA), some approaches proposed to incorporate RIA
functionalities as a new application for transcoding (Lunn et al. 2009; Brown and
Harper 2013).

Several aspects related to this technique are discussed in the chapter “Document
Engineering” from this book.

558 S. Firmenich et al.
29.4.1.2 Client-Side Adaptation

With the evolution of client-side Web technologies, another approach that has
emerged to adapt existing third-party Web contents (perhaps the most popular in
terms of actual users) is the one based on Web browser extensibility, that enables
third-party client-side adaptation based on Web content manipulation once itis loaded
in the Web browser, without previous intervention of any proxy server. This idea of
extending the Web browser for adapting Web pages was stated as Web augmentation
several years ago (Bouvin 1999), and newer literature reinforce this idea and define
accessibility as a dimension to improve existing Web sites through the use of Web
augmentation software (Diaz and Arellano 2015).

Despite that transcodings can be performed at client-side, other contributions for
external adaptation for improving accessibility, in particular those based on client-
side, are not easily classifiable into the categories Asakawa defined in the context
of traditional transcodings for accessibility (Asakawa and Takagi 2008). New and
often used techniques such as user interaction analysis, eye tracking, etc., are tied to
client-side adaptation, because these mechanisms need to work when the Web site
is already in use (i.e., once it is loaded, parsed, and rendered on the Web browser),
and not before it is delivered to the client, as it occurs in proxy servers.

For instance, Hanson and Crayne (2005) discussed how older end-users may per-
sonalize their web browsing activities by applying client-side adaptations. Another
similar approach, called Farfalla (Mangiatordi and Sareen 2011), similarly proposes
to augment Web pages with a toolbar that let end-users customize some aspects of
content presentation such as magnify text, change font size, etc. Also this kind of
adaptations could be applied automatically if the client-side component may read
a user profile from which it takes the information to make adaptation decisions
(Peinado and Ortega-Moral 2014). Renarration UI (Prasad et al. 2017) is another
similar client-side approach, that also offers a fixed set of transformations the user
may perform over the Web sites s/he is visiting.

Other approaches propose an architecture that serves to install artifacts created
by the community, instead of offering a fixed set of available transformations. For
instance, Accessmonkey (Bigham 2007) proposes a weaving engine together with
an authoring tool that, correspondingly, let end-users install and create scripts that
are run in the Web browser.

The case of Accessmonkey is a specialization of a general-purpose engine called
Greasemonkey, which executes JavaScript scripts when a specific (or a set of) URL is
loaded (Pilgrim and Mark 2005). In both cases, however, the reason for the creation
of a new adaptation artifact is a non-satisfied users need or preference.

Another approach, called Client-Side Web Refactoring (CSWR) (Garrido et al.
2013), is similar in terms of how the adaptation is performed (through DOM manipu-
lation), but it is different in terms of its motive. In the case of CSWR, the transforma-
tions of Ul elements are driven with the philosophy of well-known code refactoring
(Fowler and Beck 1999). This means that these transformations are motivated by
accessibility “bad smells” and the result must guarantee that the original application
functionality is still available.

29 User Interface Adaptation for Accessibility 559

Finally, client-side approaches that work inside Web browsers bring new possi-
bilities. For instance, Puzis et al. (2013) propose an automation assistant for people
with vision impairments. This work is interesting because the automation assistant is
an agent that adapts the interaction with Web applications, which is very important
today, given the complex business processes behind Web applications. The approach
proposes a model that uses the navigational history and the current Web site to predict
browsing actions (such as filling a text input, or click a button).

29.4.2 Architectures

The techniques described above are mainly deployed using at least one of the fol-
lowing architectures:

e Intermediate Proxy Server: In this architecture, the transformation machinery is
hosted in a proxy server that transforms the content delivered by the application
server before this content reaches the client, i.e., the user’s Web browser. Necessar-
ily, Web browsers must be configured to work with the desired proxy. Extensibility
in this approach is achieved, mainly, by annotation. Examples of approaches using
this architecture, which are mainly transcoding systems, are SADIe (Lunn et al.
2008), Social4All (Crespo et al. 2016; Takagi et al. 2009; Asakawa and Takagi
2000).

e Client-Side: The client is any software able to communicate with a Web server
and rendering the HTML responses. According to this definition, specialized Web
browsers are considered a client-side mechanism, even if they apply static trans-
formations, such as the emblematic IBM Home Page Reader (Lunn et al. 2008).
This is a good example of a transcodings system without using an intermediate
server. However, most of the latest works on client-side external adaptation rely
on well-known standards Web browsers, because they have high user adoption,
and allow very powerful extensibility mechanisms through which Web content
transformation is very easy to achieve. A Web browser extension is aware of every
event happening during the navigation session. In this way, when a Web page
is loaded, the extension recognizes this event, and it is able to manipulate the
loaded DOM to change it. By altering the DOM at client-side, users perceive the
Web page adaptation. Examples of approaches using this architecture are Farfalla
(Mangiatordi and Sareen 2011), Accessmonkey (Bigham 2007), CSWR (Garrido
et al. 2013), Social Accessibility (Takagi et al. 2008).

e Client—Server: there are several approaches, such as Social Accessibility, that
propose collaboration among users and volunteers. Also, it is common to require
a user profile to make it available from every user’s devices (Hanson and Richards
2005). In this way, although stand-alone client-side components are enough to
perform the adaptation, it is not enough to contemplate every concern behind the
problem of making the Web more accessible, such as collaboration, crowdsourcing,
profiling, etc., which are important concerns to be considered. This is the reason

560 S. Firmenich et al.

for the existence of client—server architectures, in which the client part performs
the adaptation but consumes services provided by the server counterpart to achieve
its goals.

A priori, it seems that the power of HTML transformation (or its run-time version:
DOM manipulation) of intermediary proxies and client-side adaptation is equivalent,
and, in some way, it is true. Thus, although technically almost any Ul transformation
could be made in any of these architectures, what is not equal is when and under
what stimulus or events the alteration is made. This is crucial nowadays, because
Web 2.0 and RIA applications make it difficult to transform the whole UI without
contemplating user’s behavior, just because the content delivered to the client-side
not necessarily contains all the UI, but contain a basic layout that will be populated at
client-side asynchronously. This problem was reported before (Hanson and Richards
2005), where the authors describe that obtaining a trustable version of the UI (which
is the input for the transcoding process) in a proxy server is very complicated given
the dynamism with which the Ul is composed. Besides this aspect, in other cases the
authors say it is directly impossible because of the use of SSL connections.

While dealing with dynamic Web sites (those fully interactive Web sites using
CSS, HTML, and JavaScript) is difficult through an intermediate server, this is
straightforward in the case of client-side architectures, because these approaches are
mostly based on DOM manipulation. When the adaptation is performed at client-
side, any aspect of the user interaction may be easily used as part of the adaptation
system. This aspect is mandatory for some approaches like refactoring, in which
the “bad smells” may be detected automatically by analyzing user interaction at
the client-side (Grigera et al. 2017). Another interesting aspect is composition. In
client-side approaches, several end-user tools may be integrated, for instance CSWRs
may be used for structural and behavioral adaptations but combined with Farfalla
(Mangiatordi and Sareen 2011) to adapt other aspects of content presentation, such
as color schemes. In the case of intermediate servers, the configuration in cascade of
several servers is hard to achieve.

Finally, these architectures may be analyzed also from the point of view of open-
ness. Often they are a natural environment for installing (by plug and play) new kind
of adaptation artifacts and for authoring processes. The use of visual tools for content
annotation or Ul transformation is based on the interaction between users or volun-
teers with Web content, in some cases, applying changes on the fly (Garrido et al.
2013); then running the end-user created artifacts at client-side is very convenient.

29.4.3 Methods

In this dimension, we discuss the methods in which the adaptations are created or built
into the adaptation system. That is, on the one side there are adaptations statically
created into the system and later provided by way of a fixed menu of options, and
on the other side of the spectrum there are no adaptations provided statically but all

29 User Interface Adaptation for Accessibility 561

of them are created dynamically by volunteers or end-users. In the middle, we may
find a range of hybrid methods which provide some adaptations but leave the door
open to receive new ones. Thus, we could also say that this dimension is about the
openness of the adaptation system.

Among augmentation systems which are closed to new adaptations we may cite the
work of Chung et al. (2013) for deaf people, the work of Hanson and Crayne for older
adults (Hanson and Crayne 2005), and the more recent Farfalla project (Mangiatordi
and Sareen 2011). In the first case, Chung et al. propose an algorithm to simplify the
grammatical structure of complex sentences in news articles to make them easier to
understand by deaf people, in addition to showing a graphical representation of the
relationships among sentences (Chung et al. 2013). In the case of the Farfalla system,
which is an active project similar to the older work of Handon and Crayne, there are
a fixed number of adaptations provided in a sidebar menu for the user to control:
font size, contrast and color combination, mouse pointer size, capitalized text for
easier reading and on-screen keyboard (Mangiatordi and Sareen 2011). Nevertheless,
Farfalla is an open-source project that invites for participation, so volunteers could
actually add more adaptations by coding them in the Farfalla source code.

There are many examples of open augmentation systems, for instance, Access-
monkey (Bigham 2007). With respect to the transcoding technique, it is specially
suited for an open adaptation method, that is, a mechanism to add semantic annota-
tions into the transcoding system. The reason is that semantic annotations are very
tight to the particular web application being adapted, so the cost of creating an scal-
able transcoding system is not affordable by a single group of people. Although
there are some proposals to add annotations automatically from CSS classes (Lunn
et al. 2008), or automatic transcoding of images into text (Bigham et al. 2006), they
did not prosper since automatic methods have accuracy limitations (Takagi et al.
2008). Instead, from their early works, the research group of Chieko Asakawa cre-
ated authoring tools for volunteers to add annotations to their transcoding system
(Asakawa and Takagi 2000). The annotations thus created are added into an anno-
tation database organized by target URL. Other transcoding systems that rely on
external annotations are Dante Yesilada et al. (2004) and WebAdapt2Me (2019).

It is worth to note that when an adaptation system has to rely on users to grow, it
must necessarily provide a simple and possibly visual interactive tool to make the task
very easy and promote adoption among volunteers. Takagi et al. discuss the advan-
tages of open transcoding systems, and present the “Social Accessibility Approach”
(Takagi et al. 2008). These authors take a step further by adopting a crowdsourcing
approach, i.e., calling the entire community of users to create annotations by provid-
ing them with a collaborative authoring platform. Another tool that proposes the use
of a crowdsourcing platform if Social4All (Crespo et al. 2016). Using the Social4All
platform, volunteers create adaptation profiles for any website, each profile contain-
ing a set of adaptations to solve WCAG issues. Last but not least, crowdsourcing has
also been proposed in the context of refactoring systems (Garrido et al. 2017). In this
case, a crowdsourcing platform is proposed not only for creating new adaptations
(applying CSWRs), but also for users to report bad smells manually or collect them
automatically, and for the crowd to evaluate the effectiveness of solutions.

562 S. Firmenich et al.

29.5 Discussion

Though not stated explicitly in the previous sections, external and internal approaches
to UI adaptation also have a difference in the role of end-users in the process of build-
ing the adaptable/adaptive interface. In internal approaches, the burden of designing
and implementing the adaptation machinery (be it in the form of rules or other
different approach) often lies on developers, even if recently some work to enable
non professional developers to specify their personalization rules has been put for-
ward. Meanwhile, in some external approaches for adaptation, end-users (not directly
involved in the design of the target application) might help in the process through
crowdsourcing. In internal approaches, as explained in Sect. 29.3, designers are prof-
iting from long software engineering and user modeling experience in the construc-
tion of flexible systems, which can be either seamlessly modified at design time, or
can adapt dynamically when the context changes. User interfaces are certainly one
part of the system and flexibility in Uls, e.g., for improving accessibility, is a good
example of the impact of modularity in system design. In order to limit the effort in
designing adaptation in internal approaches, there have been recent proposals aim-
ing to allow even people without programming experience to provide the desired
adaptation rules.

External approaches, meanwhile, are relatively new. Specially, the growth of
client-side adaptations could not be predicted 10 years ago when the future seemed
to bring the growth of proxy-based solutions (Asakawa and Takagi 2008). While
transcoding-based approaches have some years now, the increasing and overwhelm-
ing growth of social networks have made end-users much more aware of their own (for
example, accessibility) problems; these problems are not only shared between them
but they are also involving themselves in finding solutions, e.g., via crowdsourcing.
This involvement, which is also pushed by the popularity of end-user approaches,
puts also some pressure on the improvement of internal approaches and on designers
themselves, since it shows that those features not originally provided by designers
can be eventually added by the end-users.

Something that the literature is still missing, to the best of our knowledge, is a
thorough experimentation on very important aspects like user adoption, real coverage
of user needs, and also a comparison of the effectiveness of the different approaches
discussed in this article. We consider this a crucial task in the near future.

29.6 Future Directions

Even though UI adaptation is a consolidated topic in the literature, there are still
areas in which research is needed. Some of them are mentioned here.

e Regarding model-based approaches for internal adaptation, one problem that has
hindered part of their popularity is the relative low penetration of model-based and
model-driven development in industry. This topic has been extensively discussed

29 User Interface Adaptation for Accessibility 563

elsewhere (Whittle et al. 2014). Better and more stable tool support might help
these approaches to gain penetration. Better training and education is needed (as
in other fields related more directly with accessibility).

e In Framework-based approaches for adaptation, there is also a growing interest
to include accessibility issues. For example, the accessibility plugin for the Boot-
strap framework (BootstrapAccessibilityPlugin 2019). Yet, covering the broad
possibilities of adaptation for accessibility is a missing issue in Web development
frameworks (not only considering adaptation as a target issue).

e Regarding external approaches, most of them share a complex weakness, which
is the evolution of the source Websites. All external approaches maintain some
kind of reference to the targets UI elements that will be adapted. When the Website
changes, these references may become old, and the adaptation mechanism may not
work. Since authoring tools are becoming a common place for scripts or annotation
creation, it is important also to support the maintenance of artifacts, and not just
their building. We believe that automatic or semi-automatic testing and end-user
driven maintenance must be faced both at methodological and at technical level.

e Though not explicitly discussed in this chapter, new interaction techniques (like
those based on gestures or eyes gaze) are beginning to gain momentum for improv-
ing accessibility (Kumar et al. 2017). However, little work has been done on adapt-
ing the interaction technique to the needs of the end-user (see, for example, Yoda
2018). Moreover, there is a bunch of work in gesture recognition within the field
of robotics and rehabilitation (see, for example, Lin et al. 2017). The combination
of adaptive interaction techniques with other technologies such as the Internet of
Things (see Chapter “Internet of Things” in Part 6 of this book) will leverage
existing techniques.

e Finally, the extensive application of Artificial Intelligence (AI) techniques (such
as machine learning) will have an impact in Ul adaptation. In fact, rule-based
approaches like those discussed in Sect.29.3.1.2 have their roots in the work on
expert systems in the early 90s. Abou-Zahra et al. (2018) discuss different aspects
in which AI will improve Web accessibility and particularly, interface adaptation.
For example, natural language processing may be used to allow text adaptation
(e.g., simplifying text) for people with cognitive disabilities. Besides, Al might
help to better learn the preferences and needs of people with changing conditions
and therefore help in content adaptation. Related with this last trend, Galindo et
al. (2017) present an approach to provide Ul adaptation driven by emotions. They
also use a rule-based adaptation engine which interacts with an inference engine
to detect the actual user emotion.

29.7 The Author’s Opinion of the Field

A disability is an impairment that may be cognitive, developmental, intellectual, men-
tal, physical, sensory, or some combination of these. Such impairments may impact
the way how people can interact with Web applications in different ways. Thus, it

564 S. Firmenich et al.

becomes crucial to provide user interfaces that can change presentation, navigation,
and content according to the user abilities and preferences. Over time, developers
and designers have started to become aware of such important issues, and we can
find several applications that provide some level of adaptation. Unfortunately, often
they are not sufficient to meet users needs, and more flexible and usable solutions
are necessary.

The technological fast evolution makes this issue more challenging because peo-
ple are more and more used to access their applications through a variety of devices
ranging from wearables to large screens, also exploiting different interaction modali-
ties, and there are various emerging JavaScript frameworks that are changing the way
how people develop their applications. Flexible solutions should allow developers
and designers to control the adaptation of their user interfaces at various granular-
ity levels (single elements, groups, pages, etc.) and for various types of attributes.
The adaptation should consider the various contextual aspects in order to be more
effective, also considering emotional and environmental parameters. This area can
benefit from the use of intelligent techniques that, based on the analysis of previous
interactions, can predict the most suitable adaptations. However, more importantly,
the users should be in control of the adaptation; they should know when the adapta-
tion is triggered, where, how, and why it is applied. In this way, new tools may be
developed to empower even nonprofessional developers to directly personalize their
applications according to their actual and dynamic needs.

29.8 Conclusions

In this chapter, we have discussed several issues related to UI adaptation for acces-
sibility. Adapting the UI to the special needs of different kinds of users is a must
and the problem has been discussed in the literature for more than 30 years. While
each particular user or user profile might pose a different challenge, there are already
techniques that allow fine-grained personalization of the interface to improve its
accessibility and usability.

We have presented a discussion of the proposed solutions in which we sepa-
rate those approaches in which the interface adaptation is somewhat “built-in” in
the system design and those in which adaptation occurs “outside” of the original
application.

In both types of approaches, there are a wide range of different techniques that so
far have shown to be powerful enough to face existing challenges to achieve adapta-
tion. While in “internal” approaches much of the burden for foreseeing adaptation is
often dealt with by designers, even if some end-user development approach is emerg-
ing, in “external” ones, there is a tendency to involve end-users either by building
their own adaptations or solving others’ problems via crowdsourcing.

29 User Interface Adaptation for Accessibility 565

However, there is yet much work to do as mentioned in Sects. 29.5 and 29.6. New
implementation frameworks (such as Angular, Node.js) pose new technical issues
in applying the adaptation solutions. More generally, further longitudinal studies
are needed with final users representing the various target communities in order to
validate the various technical solutions and their actual effectiveness.

Acknowledgements The authors acknowledge the support from the Argentinian National Agency
for Scientific and Technical Promotion (ANPCyT), grant numbers PICT-2015-3000 and PICT-2015-
2050.

References

Abou-Zahra S, Brewer J, Cooper M (2018) Artificial intelligence (Al) for web accessibility. In:
Proceedings of the internet of accessible things on - W4A 2018. ACM Press, New York, pp 1-4.
https://doi.org/10.1145/3192714.3192834. ISBN 9781450356510

Ahmetovic D, Gleason C, Ruan C, Kitani K, Takagi H, Asakawa C (2016) NavCog. In: Proceedings
of the 18th international conference on human-computer interaction with mobile devices and
services - MobileHCI 2016. ACM Press, New York, pp 90-99. https://doi.org/10.1145/2935334.
2935361. ISBN 9781450344081

Akiki PA, Bandara AK, Yu Y (2014) Adaptive model-driven user interface development systems.
ACM Comput Surv 47:1-33. https://doi.org/10.1145/2597999. ISSN 03600300

Asakawa C, Takagi H (2000) Annotation-based transcoding for nonvisual web access. In: Proceed-
ings of the fourth international ACM conference on Assistive technologies - Assets 2000, pp
172-179. https://doi.org/10.1145/354324.354588

Asakawa C, Takagi H (2008) Transcoding. In: Web Accessibility. Springer, London, pp 231-260.
https://doi.org/10.1007/978-1-84800-050-6_14

Bigham JP, Kaminsky RS, Ladner RE, Danielsson OM, Hempton GL (2006) WebInSight: In: Pro-
ceedings of the 8th international ACM SIGACCESS conference on computers and accessibility
- Assets 2006. ACM Press, New York, p 181. https://doi.org/10.1145/1168987.1169018. ISBN
1595932909

Bigham JP (2007) AccessMonkey: enabling and sharing end user accessibility improvements. ACM
SIGACCESS Access Comput 89:3—6. https://doi.org/10.1145/1328567.1328568

BootstrapAccessibilityPlugin, https://www.paypal-engineering.com/2014/01/28/bootstrap-
accessibility-plugin-making-the-popular-web-development-framework-better/

Bouvin NO (1999, February) Unifying strategies for Web augmentation. In: Proceedings of the
tenth ACM conference on hypertext and hypermedia: returning to our diverse roots. ACM, pp
91-100. https://doi.org/10.1145/294469.294493

Bouzit S, Calvary G, Coutaz J, Chene D, Petit E, Vanderdonckt J (2017) The PDA-LPA design
space for user interface adaptation. In: 2017 11th international conference on research challenges
in information science (RCIS). IEEE, pp 353-364. https://doi.org/10.1109/RCIS.2017.7956559.
ISBN 978-1-5090-5476-3

Brown A, Harper S (2013) Dynamic injection of WAI-ARIA into web content. In: Proceedings of
the 10th international cross-disciplinary conference on Web Accessibility - W4A 2013. ACM
Press, New York, p 1. https://doi.org/10.1145/2461121.2461141. ISBN 9781450318440

Brusilovsky P (2001) User modeling and user-adapted interaction 11:87. https://doi.org/10.1023/
A:1011143116306

Calvary G, Coutaz J, Bouillon L, Florins M, Limbourg Q, Marucci L, Paterno F, Santoro C, Souchon
N, Thevenin D, Vanderdonckt J (2002) Cameleon reference framework in cameleon reference
framework

https://doi.org/10.1145/3192714.3192834
https://doi.org/10.1145/2935334.2935361
https://doi.org/10.1145/2935334.2935361
https://doi.org/10.1145/2597999
https://doi.org/10.1145/354324.354588
https://doi.org/10.1007/978-1-84800-050-6_14
https://doi.org/10.1145/1168987.1169018
https://doi.org/10.1145/1328567.1328568
https://www.paypal-engineering.com/2014/01/28/bootstrap-accessibility-plugin-making-the-popular-web-development-framework-better/
https://www.paypal-engineering.com/2014/01/28/bootstrap-accessibility-plugin-making-the-popular-web-development-framework-better/
https://doi.org/10.1145/294469.294493
https://doi.org/10.1109/RCIS.2017.7956559
https://doi.org/10.1145/2461121.2461141
https://doi.org/10.1023/A:1011143116306
https://doi.org/10.1023/A:1011143116306

566 S. Firmenich et al.

Chung J-W, Min H-J, Kim J, Park JC (2013)Enhancing readability of web documents by text
augmentation for deaf people. In: Proceedings of the 3rd international conference on web intelli-
gence, mining and semantics - WIMS 2013. ACM Press, New York, p 1. https://doi.org/10.1145/
2479787.2479808. ISBN 9781450318501

Crespo RG, Espada JP, Burgos D (2016) Social4all: definition of specific adaptations in web appli-
cations to improve accessibility. Comput Stand Interfaces 48:1-9. https://doi.org/10.1016/J.CSL.
2016.04.001. ISSN 0920-5489

Dey AK, Newberger A (2009)Support for context-aware intelligibility and control. In: Proceedings
of the 27th international conference on Human factors in computing systems - CHI 09. ACM
Press, New York, p 859. https://doi.org/10.1145/1518701.1518832. ISBN 9781605582467

Diaz O, Arellano C (2015) The augmented web. ACM Trans Web 9:1-30. https://doi.org/10.1145/
2735633. ISSN 15591131

Dieterich H, Malinowski U, Kuhme T, Schneider-Hufschmidt M (1993) State of the art in adaptive
user interfaces. Adapt User Interfaces: Princ Pract 10:13

Edmonds E (1982) The mancomputer interface: a note on concepts and design. Int J Man-Mach
Stud 16:231-236. https://doi.org/10.1016/S0020-7373(82)80060-6 ISSN 00207373

Fowler M, Beck K (1999) Refactoring: improving the design of existing code. Addison-Wesley,
Boston. ISBN 0201485672

Gajos KZ, Long JJ, Weld DS (2006) Automatically generating custom user interfaces for users
with physical disabilities. In: Proceedings of the 8th international ACM SIGACCESS conference
on computers and accessibility - Assets 2006. ACM Press, New York, p 243. https://doi.org/10.
1145/1168987.1169036. ISBN 1595932909

Galindo JA, Dupuy-Chessa S, Céret E (2017, August) Toward a generic architecture for UI adap-
tation to emotions. In: Proceedings of the 29th conference on I'Interaction Homme-Machine.
ACM, pp 263-272. https://doi.org/10.1145/3132129.3132156

Garrido A, Firmenich S, Grigera J, Rossi G (2017) Data-driven usability refactoring: tools and
challenges. In: 2017 6th International workshop on software mining (SoftwareMining). IEEE, pp
52-55. https://doi.org/10.1109/SOFTWAREMINING.2017.8100854. ISBN 978-1-5386-1389-4

Garrido A, Firmenich S, Rossi G, Grigera J, Medina-Medina N, Harari I (2013) Personalized web
accessibility using client-side refactoring. IEEE Internet Comput 17:58-66. https://doi.org/10.
1109/MIC.2012.143. ISSN 1089-7801

Ghiani G, Leporini B, Paterno F (2009) Vibrotactile feedback to aid blind users of mobile guides.
J Vis Lang Comput 20:305-317. https://doi.org/10.1016/j.jv1c.2009.07.004. ISSN 1045926X

Ghiani G, Manca M, Paternd F, Porta C (2014) Beyond responsive design: context-dependent
multimodal augmentation of web applications. Springer, Cham, pp 71-85. https://doi.org/10.
1007/978-3-319-10359-4_6

Ghiani G, Manca M, Paterno F, Santoro C (2017) Personalization of context-dependent applications
through trigger-action rules. ACM Trans Comput-Hum Interact 24:1-33. https://doi.org/10.1145/
3057861. ISSN 10730516

Grigera J, Garrido A, Rivero JM, Rossi G (2017) Automatic detection of usability smells in web
applications. Int J Hum-Comput Stud 97:129-148. https://doi.org/10.1016/j.ijhcs.2016.09.009

Hanson VL, Crayne S (2005) Personalization of web browsing: adaptations to meet the needs of
older adults. Univers Access Inf Soc 4:46-58. https://doi.org/10.1007/s10209-005-0110-9. ISSN
1615-5289

Hanson V, Richards J (2005) Achieving a more usable World Wide Web. Behav Inf Technol 24:231—
246. https://doi.org/10.1080/01449290412331327465. ISSN 0144-929X

Hussain J, Ul Hassan A, Muhammad Bilal HS, Ali R, Afzal M, Hussain S, Bang J, Banos O, Lee
S (2018) Model-based adaptive user interface based on context and user experience evaluation.
J Multimodal User Interface 12:1-16. https://doi.org/10.1007/s12193-018-0258-2. ISSN 1783-
7677

Kumar C, Menges R, Miiller D, Staab S (2017) Chromium based framework to include gaze inter-
action in web browser. In: Proceedings of the 26th international conference on World Wide Web

https://doi.org/10.1145/2479787.2479808
https://doi.org/10.1145/2479787.2479808
https://doi.org/10.1016/J.CSI.2016.04.001
https://doi.org/10.1016/J.CSI.2016.04.001
https://doi.org/10.1145/1518701.1518832
https://doi.org/10.1145/2735633
https://doi.org/10.1145/2735633
https://doi.org/10.1016/S0020-7373(82)80060-6
https://doi.org/10.1145/1168987.1169036
https://doi.org/10.1145/1168987.1169036
https://doi.org/10.1145/3132129.3132156
https://doi.org/10.1109/SOFTWAREMINING.2017.8100854
https://doi.org/10.1109/MIC.2012.143
https://doi.org/10.1109/MIC.2012.143
https://doi.org/10.1016/j.jvlc.2009.07.004
https://doi.org/10.1007/978-3-319-10359-4_6
https://doi.org/10.1007/978-3-319-10359-4_6
https://doi.org/10.1145/3057861
https://doi.org/10.1145/3057861
https://doi.org/10.1016/j.ijhcs.2016.09.009
https://doi.org/10.1007/s10209-005-0110-9
https://doi.org/10.1080/01449290412331327465
https://doi.org/10.1007/s12193-018-0258-2

29 User Interface Adaptation for Accessibility 567

companion - WWW 2017 companion. ACM Press, New York, pp 219-223. https://doi.org/10.
1145/3041021.3054730. ISBN 9781450349147

LinY, Breugelmans J, Iversen M, Schmidt D (2017) An adaptive interface design (AID) for enhanced
computer accessibility and rehabilitation. Int J Hum-Comput Stud 98:14-23. https://doi.org/10.
1016/J.1JHCS.2016.09.012. ISSN 1071-5819

Lunn D, Bechhofer S, Harper S (2008) The SADIe transcoding platform. In: Proceedings of the
2008 international cross-disciplinary workshop on Web accessibility (W4A) - W4A 2008. ACM
Press, New York, p 128. https://doi.org/10.1145/1368044.1368073. ISBN 9781605581538

Lunn D, Harper S, Bechhofer S (2009) Combining SADIe and AxsJAX to improve the accessibility
of web content. In: Proceedings of the 2009 international cross-disciplinary conference on web
accessibililty (W4A) - W4A 2009. ACM Press, New York, p 75. https://doi.org/10.1145/1535654.
1535672. ISBN 9781605585611

Mangiatordi A, Sareen HS (2011) Farfalla project: browser-based accessibility solutions. In: Pro-
ceedings of the international cross-disciplinary conference on web accessibility - W4A 2011.
ACM Press, New York, p 1. https://doi.org/10.1145/1969289.1969317. ISBN 9781450304764

Marcotte E, Impr. EMD (2011) Responsive web design, Eyrolles, ISBN 2212133316

McKinley PK, Sadjadi SM, Kasten EP, Cheng BH (2004) A taxonomy of compositional adaptation.
Rapport Technique numéro MSU-CSE-04-17

Mifién R, Paterno F, Arrue M, Abascal J (2016) Integrating adaptation rules for people with special
needs in model-based UI development process. Univers Access Inf Soc 15:153—168. https://doi.
org/10.1007/s10209-015-0406-3. ISSN 1615-5289

Nebeling M, Speicher M, Norrie M (2013) W3touch. In: Proceedings of the SIGCHI conference
on human factors in computing systems - CHI 2013. ACM Press, New York, p. 2311. https://doi.
org/10.1145/2470654.2481319. ISBN 9781450318990

Paterno F (2005) Model-based tools for pervasive usability. Interact Comput. https://doi.org/10.
1016/j.intcom.2004.06.017. ISSN 09535438

Paterno F (2013) User interface design adaptation in the encyclopedia of human-computer interac-
tion. In: The encyclopedia of human-computer interaction, 2nd edn

Paterno F, Santoro C, Spano LD (2011) Engineering the authoring of usable service front ends. J
Syst Softw. https://doi.org/10.1016/j.jss.2011.05.025. ISSN 01641212

Peinado I, Ortega-Moral M (2014) Making web pages and applications accessible automatically
using browser extensions and apps. Springer, Cham, pp 58-69. https://doi.org/10.1007/978-3-
319-07509-9_6

Peissner M, Hébe D, Janssen D, Sellner T (2012) MyUL In: Proceedings of the 4th ACM SIGCHI
symposium on engineering interactive computing systems - EICS 2012. ACM Press, New York,
p 81. https://doi.org/10.1145/2305484.2305500. ISBN 9781450311687

Pilgrim M, Mark (2005) Greasemonkey hacks. O’Reilly, Sebastopol. ISBN 0596101651

Prasad GVRIS, Soumya MS, Choppella V (2017) Renarrating web pages for improving informa-
tion accessibility. In: 2017 12th international conference on intelligent systems and knowledge
engineering (ISKE), IEEE, pp 1-8. https://doi.org/10.1109/ISKE.2017.8258772. ISBN 978-1-
5386-1829-5

Puzis Y, Borodin Y, Puzis R, Ramakrishnan I (2013) Predictive web automation assistant for people
with vision impairments. In: Proceedings of the 22nd international conference on World Wide
Web - WWW 2013. ACM Press, New York, pp 1031-1040. https://doi.org/10.1145/2488388.
2488478. ISBN 9781450320351

Salber D, Dey AK, Abowd GD (1999) The context toolkit. In: Proceedings of the SIGCHI conference
on human factors in computing systems the CHI is the limit - CHI 1999. ACM Press, New York,
pp 434-441. https://doi.org/10.1145/302979.303126. ISBN 0201485591

Sottet J-S, Ganneau V, Calvary G, Coutaz J, Demeure A, Favre J-M, Demumieux R (2007) Model-
driven adaptation for plastic user interfaces. Springer, Heidelberg, pp 397—410. https://doi.org/
10.1007/978-3-540-74796-3_38

https://doi.org/10.1145/3041021.3054730
https://doi.org/10.1145/3041021.3054730
https://doi.org/10.1016/J.IJHCS.2016.09.012
https://doi.org/10.1016/J.IJHCS.2016.09.012
https://doi.org/10.1145/1368044.1368073
https://doi.org/10.1145/1535654.1535672
https://doi.org/10.1145/1535654.1535672
https://doi.org/10.1145/1969289.1969317
https://doi.org/10.1007/s10209-015-0406-3
https://doi.org/10.1007/s10209-015-0406-3
https://doi.org/10.1145/2470654.2481319
https://doi.org/10.1145/2470654.2481319
https://doi.org/10.1016/j.intcom.2004.06.017
https://doi.org/10.1016/j.intcom.2004.06.017
https://doi.org/10.1016/j.jss.2011.05.025
https://doi.org/10.1007/978-3-319-07509-9_6
https://doi.org/10.1007/978-3-319-07509-9_6
https://doi.org/10.1145/2305484.2305500
https://doi.org/10.1109/ISKE.2017.8258772
https://doi.org/10.1145/2488388.2488478
https://doi.org/10.1145/2488388.2488478
https://doi.org/10.1145/302979.303126
https://doi.org/10.1007/978-3-540-74796-3_38
https://doi.org/10.1007/978-3-540-74796-3_38

568 S. Firmenich et al.

Stephanidis C, Paramythis A, Sfyrakis M, Stergiou A, Maou N, Leventis A, Paparoulis G, Karagian-
nidis C (1998) Adaptable and adaptive user interfaces for disabled users in the AVANTI project.
Springer, Heidelberg, pp 153-166. https://doi.org/10.1007/BFb0056962

Stephanidis C, Savidis A (2001) Universal access in the information society: methods, tools,
and interaction technologies. Univers Access Inf Soc 1(1):40-55. https://doi.org/10.1007/
$102090100008. ISSN 1615-5289

Takagi H, Kawanaka S, Kobayashi M, Itoh T, Asakawa C (2008) Social accessibility. In: Proceed-
ings of the 10th international ACM SIGACCESS conference on computers and accessibility -
Assets 2008. ACM Press, New York, p 193. https://doi.org/10.1145/1414471.1414507. ISBN
9781595939760

Takagi H, Kawanaka S, Kobayashi M, Sato D, Asakawa C (2009) Collaborative web accessibility
improvement. In: Proceeding of the eleventh international ACM SIGACCESS conference on
computers and accessibility - Assets 2009. ACM Press, New York, p 195. https://doi.org/10.
1145/1639642.1639677. ISBN 9781605585581

Vanderheiden GC, Treviranus J, Ortega-Moral M, Peissner M, de Lera E (2014) Creating a global
public inclusive infrastructure (GPII). Springer, Cham, pp 506-515. https://doi.org/10.1007/978-
3-319-07509-9_48

WAI-ARIA (W3C), Web accessibility initiative (WAI) — W3C. https://www.w3.org/ WAI/standards-
guidelines/aria/

WebAdapt2Me. https://www-03.ibm.com/press/us/en/pressrelease/19515.wss

Whittle J, Hutchinson J, Rouncefield M (2014) The state of practice in model-driven engineering.
IEEE Softw 31:79-85. https://doi.org/10.1109/MS.2013.65. ISSN 0740-7459

Yang SJ, Shao NW (2007) Enhancing pervasive web accessibility with rule-based adaptation strat-
egy. Expert Syst Appl 32(4):1154-1167. https://doi.org/10.1016/j.eswa.2006.02.008

Yesilada Y, Harper S, Goble C, Stevens R (2004) DANTE. In: Proceedings of the 13th international
World Wide Web conference on alternate track papers and posters - WWW Alt. 2004. ACM
Press, New York, p 490. https://doi.org/10.1145/1013367.1013540. ISBN 1581139128

Yoda I (2018) A study of the adaptive gesture interface for the severely physically handicapped.
Impact 2018:41-43

https://doi.org/10.1007/BFb0056962
https://doi.org/10.1007/s102090100008
https://doi.org/10.1007/s102090100008
https://doi.org/10.1145/1414471.1414507
https://doi.org/10.1145/1639642.1639677
https://doi.org/10.1145/1639642.1639677
https://doi.org/10.1007/978-3-319-07509-9_48
https://doi.org/10.1007/978-3-319-07509-9_48
https://www.w3.org/WAI/standards-guidelines/aria/
https://www.w3.org/WAI/standards-guidelines/aria/
https://www-03.ibm.com/press/us/en/pressrelease/19515.wss
https://doi.org/10.1109/MS.2013.65
https://doi.org/10.1016/j.eswa.2006.02.008
https://doi.org/10.1145/1013367.1013540

	29 User Interface Adaptation for Accessibility
	29.1 Introduction
	29.2 Classifying Adaptive Interfaces
	29.3 Internal Approaches for UI Adaptation
	29.3.1 Techniques
	29.3.2 Architectures
	29.3.3 Methods

	29.4 External Approaches for UI Adaptation
	29.4.1 Techniques
	29.4.2 Architectures
	29.4.3 Methods

	29.5 Discussion
	29.6 Future Directions
	29.7 The Author's Opinion of the Field
	29.8 Conclusions
	References

