
Security in Migratory Interactive Web Applications 

Giuseppe Ghiani, Lorenzo Isoni, Fabio Paternò 
CNR-ISTI, HIIS Laboratory 

Via Moruzzi, 1 
56124 Pisa, Italy 

{giuseppe.ghiani, lorenzo.isoni, fabio.paterno}@isti.cnr.it 
 

 
 

ABSTRACT 
In ubiquitous environments migratory interactive applications 
allow users to perform their tasks continuously across various 
devices. Users can push and pull migratory Web applications 
from one device to another for various reasons. However, the 
flexibility of such pervasive applications raises various security 
issues, such as the risk of theft of private information from the 
migrated user interfaces or the intrusion of malicious versions of 
the applications replacing the original ones. In this paper, we 
analyse such risks and present a number of solutions to address 
them in a client/server-based solution for supporting secure mi-
gration of interactive Web applications. 

Categories and Subject Descriptors 
H.5.m. [Information interfaces and presentation (e.g., HCI)]: 
Miscellaneous. K.6.5. [Management of computing and infor-
mation systems]: Security and protection  authentication, unau-
thorized access (e.g., hacking, phreaking). 

General Terms 
Algorithms, Security, Human Factors. 

Keywords 
Migratory Interactive Web Applications, Security, Multi-device 
Environments. 

1. INTRODUCTION 
In recent years there has been an increasing interest in solu-

tions able to exploit the technological offerings of the mass mar-
ket in terms of variety of devices characterized by widely varying 
interaction resources (such as screen size, support for vocal inter-
action, touch-support, etc.). In current multi-device environments 
it is important to support flexible access mechanisms, which 
should consider that users often need to move and would like to 
opportunistically exploit the devices that dynamically become 
available. A recent study [15] highlighted that most of consumers’ 
time is spent in front of a variety of interactive devices, which can 
be used both sequentially (i.e. by moving from one device to 

another) and simultaneously (i.e. using more than one device at 
the same time). According to that study, sequential usage prevails 
on the simultaneous, and there is a need for enabling users to 
preserve their interaction state when moving the task performance 
between devices. 

Application migration is a type of multi-device support in which 
users can dynamically change device and still continue to perform 
their tasks from the point they left off in the source device. Envi-
ronments supporting migratory interactive Web applications allow 
users to dynamically push and pull them from one device to an-
other for various reasons. Web migration implies that the client-
side part of a Web application is moved automatically and in real 
time from the browser of a source device to the browser of a 
target one. This is done without particular user intervention (i.e. 
the user is not requested to insert further information, such as a 
URL, on the target device). When the applications move to anoth-
er device the state of their interactive part (i.e. the result of user 
interactions) is preserved as well without requiring any support 
from the server side of the application. Some benefits of Web 
migration are the task continuity when changing device, and the 
possibility of sharing contents and functionalities with other users 
(e.g., when migrating an interface towards one or multiple users). 
In addition, migratory environments can even allow users to in-
teractively select the parts of the interactive application that they 
would like to migrate to the target device, thus enabling user-
driven adaptation. In this paper we consider a migration platform 
independent of the Web application servers. It is dedicated to 
providing additional services (i.e. partial/total migration) to exist-
ing applications, through the support of a proxy server. Thus, due 
to the architecture of such platform, migrations across various 
devices can raise additional security risks, concerning the theft of 
private information in the interactive applications or the intrusion 
of bogus versions of the interactive migrating application to re-
place the original ones. For example, a user can enter personal 
information and confidential data while booking a room on a 
mobile device and then can migrate it to a desktop system with 
the risk that the data are stolen in some way. To address such 
issues, we present a set of techniques that aim to preserve security 
in this type of context. 

In the paper, after discussing related work, we introduce the secu-
rity issues in migration of Web applications across multiple de-
vices. Next we briefly describe an architecture supporting migra-
tion of interactive Web applications by describing its functionali-
ties, main components and the communications between them. 
We then analyse the possible security risks arising from that solu-
tion, by dividing them into theft of information and false input. 
We continue by presenting design and implementation of a num-
ber of techniques that allow the users to avoid security risks when 

 

Permission to make digital or hard copies of part or all of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. Copyrights 
for components of this work owned by others than ACM must be hon-
ored. Abstracting with credit is permitted. To copy otherwise, to repub-
lish, to post on servers or to redistribute to lists, requires prior specific 
permission and/or a fee. 
MUM ‘12, December 04 - 06 2012, Ulm, Germany. 
Copyright 2012 ACM 978-1-4503-1815-0/12/12…$15.00. 



accessing the Migration Platform functionalities and performing 
proxy-based navigation. We also report on how the proposed 
solution has been validated with some well-known existing Web 
applications. Lastly, we draw some conclusions and provide indi-
cations for future work. 

2. RELATED WORK 
Security and privacy in multi-device interaction of nomadic users 
has been tackled by Arthur and Olsen [2]. They proposed XICE, a 
toolkit for safely distributing UIs from devices to annexed dis-
plays, and dealt with potential risks related to the usage of (pub-
lic) annexed devices. The goal is to protect user privacy and secu-
rity from risks arising when application windows are shared with 
external devices that are considered untrusted. Although we also 
consider the main security and privacy issues, another difference 
with our work is that the XICE is a windowing toolkit for creating 
new applications, while the Migration Platform we consider is 
aimed at making existing applications migratory. XICE is thus a 
tool for developers, while we consider security issues for end 
users interacting with migratory Web applications. 

Deep Shot [3] is a tool supporting migration that exploits the 
camera of a smartphone to detect the current application and its 
state but in this work the associated security issues were not ad-
dressed. In general, making the actual security support in Web 
applications access more user perceivable was addressed in [10], 
where the authors propose a Firefox plug-in to include a bar 
whose colour indicates the actual security level. However, that 
work did not consider the issues of security when Web applica-
tions are accessed in multi-device environments. 

More in general, privacy and security concerns regarding interac-
tion with public displays have been investigated as well as issues 
related to sharing applications among multiple users/devices. 

User's behaviour towards public displays in public or semi-public 
spaces has been recently studied in [1]. The general findings of 
that study indicate that inputting personal information in shared 
displays is perceived as privacy affecting. Users are afraid of 
leaving personal information on a public display because it can be 
caught by people watching at the display while it is being inputted 
or can be subsequently found by other users of the display. 

Some interesting issues concerning access to public devices were 
also addressed by [14], which supports the use of public fixed 
displays with the possibility of hiding private information while 
allowing mobile devices to show it and support user input. In our 
work we do not consider the issues of showing information in 
public devices but we rather focus on the security risks associated 
with dynamic migration of interactive Web applications. An ar-
chitecture that affords mobile user greater trust and security when 
browsing the internet (e.g., when making personal/financial trans-
actions) from public terminals at Internet Cafes or other unfamil-
iar locations is presented in [13]. This is achieved by enabling 
Web applications to split their client-side pages across a pair of 
browsers: one untrusted browser running on a public PC and one 
trusted browser running on the user's personal mobile device, 
composed into a single logical interface through a local connec-
tion, wired or wireless. However, their solution involving two 
devices for accessing a Web application can generate some usa-
bility issues. Thus, we have investigated different solutions for 
preserving both usability and security when accessing Web appli-
cations in pervasive environments. 

Muse [16], a system for ubiquitous computing through mobile 
devices, relies on a safe approach for application sharing and 
migration in cloud environments. The underlying platform of 
Muse, named CyberLiveApp [8], provides privacy and security to 
the users that need to share applications with (or to migrate them 
towards) other users. A common issue between CyberLiveApp 
and our Migration Platform is maintaining the application state 
during migration/sharing, particularly in case of security concerns 
(e.g., when the application interface involves confidential data). 
The authors of CyberLiveApp claim to have achieved a fine-
grained control of security and privacy by letting the user choose 
which application windows to share with others through a proxy-
based filtering mechanism. Differently, we propose the possibility 
for the users to customize their protection by specifying the priva-
cy level. In our support, the target device(s) will be able to access 
the functionalities of the original interface according to such 
parameters. The main difference with our approach is, however, 
that CyberLiveApp is based on services of virtual machines in the 
cloud, while our Migration Platform is able to support existing 
Web applications. 

An agile process for developing secure Web applications is pre-
sented in [5], discussing methods that integrate security design 
within the development process. The authors state that security of 
Web applications must be tackled at design time, rather than after 
implementation. This approach, however, was not suitable with 
our case study, since our environment should make able to mi-
grate existing applications, even if they were designed without 
addressing security risks. 

Satoh and Tokuda [12] consider service compositions assuming 
that the atomic services comply with own security policies. When 
atomic services are composed,  inconsistencies can arise between 
their policies and developers may have to perform consistency 
checks “by hand”. In order to avoid this overhead and to enable 
even developers without expertise in security issues to compose 
automatically services, the authors propose a logic-based architec-
ture for policy composition. Process definitions, service descrip-
tions and data protection policies are given as inputs. The output 
consists of a composite service description with security policies, 
which is then used to generate the concrete policies. In our ap-
proach we cope with existing Web applications (and associated 
services) that are accessed through a migration server,  differently 
from [12] where the atomic services are all assumed to be secure. 

To summarise, we note that the specific security issues that can be 
involved in emerging ubiquitous migratory interactive applica-
tions have been underexplored. This paper aims to describe possi-
ble solutions for such issues. 

3.  SECURITY ISSUES IN WEB 
APPLICATION MIGRATION 
Web application migration allows users to change device and 
continue the performance of their tasks from the point they left off 
in the source device. This implies preserving the state of the Web 
application even on the client-side. Such state includes input 
entered in forms, cookies, sessions, etc. 

An example Web migration is represented by users accessing an 
online store like Amazon: they log in, browse the site, and enter 
some input in forms to query the product database. In the case 
shown in Figure 1, the user has previously logged in on the desk-
top device and has added two items to the shopping cart (upper 
part). After migration to the mobile device (lower part), the page 



is state-persistent: the partially filled in form (see 3 in Figure 1) 
has kept its previously inserted values and the user session is 
maintained (see 1, 2). Thus, if further navigation were performed 
from the migrated page (e.g., a search or the addition of an item to 
the shopping cart), the user session containing the items in the 
session chart would be preserved throughout the navigation.  

 

 

 

Fig. 1. Example of Migration involving Personal data. 

 

Relevant security issues arise upon migration triggering, i.e. when 
the interface moves from the originating device to the target one. 
Indeed, what is actually transferred is not the simple source code 
of the page, but the current DOM (i.e. the representation of the 
current Web application within the originating browser), includ-
ing the interaction state which might contain confidential data. 
For instance, a page with a login form may contain a username 
and a password, which the user would not like to be transferred 
“in clear” within the network. 

A secure Migration Platform should then be able to detect securi-
ty and privacy issues of the navigated Web pages to act accord-
ingly when migration is triggered. In addition, security must be 
granted in general during the whole interaction session with the 
Web application through the Migration Platform: this includes the 
phase before migration triggering, and the post-migration phase, 
i.e. during further navigation from the migrated page. 

As a starting point to identify the specific security lacks that may 
affect the migration process, it is worth referring to the best 
known types of attacks that threaten user security and privacy. For 
For the sake of clarity, we have grouped the typical attacks into 
two main categories: those devoted to information theft and those 
aimed at illicitly impersonating the user through false input, 
though both attack strategies are often initiated by stealing some 
user data. The following two subsections discuss both types of 
security problems and how they can be originated. The next sec-
tions, instead, describe first the architecture of the proposed Mi-
gration Platform, and then its intrinsic security risks and how they 
have been tackled to improve the security of the environment. 

3.1 Information theft 
Personal information, such as credentials or navigation chronolo-
gy, can be easily stolen if data are exchanged transparently be-
tween client and server. The strategies of listening to the packets 
exchanged between client and server, known as eavesdropping, 
are often aimed to get the user confidential data, such as access 
credentials. Eavesdropping is among the most serious threats of 
the systems that exchange data without encryption.  

The access credentials can be stolen even by repeatedly querying 
the Web application server. A similar strategy, known as brute 
force, can be performed by iteratively trying the login with differ-
ent credentials, until the right combination is found. 

3.2 False input 
In order to act as an authorized user, an intruder may initially 
perform an authentication attack. The goal of an authentication 
attack is to skip the system authentication procedure in order to 
perform unauthorized operations, such as access to information or 
functionalities to which the attacker would not be entitled (e.g., 
user’s privacy settings). This type of attack can lead to the possi-
bility of performing false input, in which false information is 
input into the computer with the aim to cause a fraudulent output. 

Such kind of attack can be carried out through diverse strategies, 
such as the previously mentioned eavesdropping or the brute 
force. Another, more refined, way to trick the authentication 
mechanism is the code interpretation of scripts within a Web 
page. When the decision of what information to display, accord-
ing to user privileges, or even the authentication mechanism is 
delegated to the page scripts, an authentication attack can be 
performed by simply interpreting the scripts. Scripts interpreta-
tion, in this case, reveals the system communication logic. Any 
modifications can then be made to the page/scripts in order to skip 
the controls, and to access the system without any authentication.  

False input can be even performed by skipping the authentication 
mechanism and directly acting as an authorized user. A similar 
strategy is known as a session management attack, often referred 
to as session hijacking, and aims to steal the user session identifi-
er (usually sent as a cookie) in order to act as the user. Session 
hijacking is currently among the most common threats, and can be 
carried out by the following mechanisms: Cross site scripting 
(XSS), which is done by injecting malicious scripts into the navi-
gated page with the aim to steal data (such as cookies); Session 
sidejacking, that consists in listening to the network packets in 
order to extract the session cookie(s) (similarly to eavesdropping); 
Replay attack, performed by sending copies of packets previously 
“stolen” from the network to the application server. Replay attack 



is aimed to commit frauds (e.g., repeated transactions) by re-
sending packets that contain the original cookies. 

Session fixation is done by forcing a user to use a known identifi-
er to query the system. This type of attack usually exploits the 
forwarding of the identifier as a URL parameter. 

Systems typically perform controls on user privileges before 
allowing the access to functionalities and resources. Techniques 
aiming to trick such controls are often referred to as authorization 
attacks. 

A malicious code fragment can be injected into a system by pass-
ing it as a parameter through some exposed method. This tech-
nique is known as code injection and can be extremely dangerous 
if the input parameter is not properly validated. A widely known 
code injection technique consists in passing a query string to the 
form for querying a database (e.g., a search form). Indeed, the 
code injection applied to the system database could return person-
al data of the system subscribers. 

 

4. A CLIENT/SERVER ARCHITECTURE 
FOR WEB APPLICATION MIGRATION 
The Migration Platform architecture considered in this paper 
allows any browser-enabled fixed or mobile device to access any 
interactive Web applications through a proxy, which injects on 
them some JavaScript code that makes them migratory. The proxy 
also annotates all the URLs within the page and its associated 
resources (e.g., CSS) in a way to convert them into absolute links 
under the domain of the Migration Server. In addition, any device 
involved in the migration environment must execute the Migra-
tion Client, which is a separate Web application able to provide 
information on the other devices available in the environment. 
The information is gathered and circulated through the execution 
of an Ajax-based discovery protocol. The Migration Client run-
ning on each active device periodically queries the Migration 
Platform server for the available information (e.g., list of possible 
target devices and their activities). At the same time, every device 
updates information about its situation to the Migration Platform. 
The Migration Client is also used to trigger the migration and 
select the target device. A Web application is launched from a 
client device through the Migration Proxy, which annotates it 
with JavaScript excerpts that are subsequently exploited to sup-
port migration. When migration is triggered by the user from the 
Migration Client, the DOM (Document Object Model) and the 
state of the interactive Web application are sent to the Migration 
Server, which updates the DOM with the whole interaction state 
and uploads it to the target device. The upload is carried out in 
two steps: an incoming migration message is first sent by the 
Migration Server to the Migration Client of the target device 
containing a reference to the target page URL within the Migra-
tion Server, then a new window/tab is activated with the target 
URL (which is relative to the Migration Server) so that the target 
page is shown. 

In general, migration can be: single-user, when a mobile user 
decides to change device and continue to interact with the same 
application in the target device;  multiuser, when an interactive 
application accessed by a user is moved (either through push by 
the user on the source device or through pull by the user on the 
target device) to a device accessed by another user. The consid-
ered Migration Platform architecture has been discussed in [6], 

however that work did not tackle security issues arising from 
application migration and how to address them. 

In this type of architecture the risks of the pre-migration phase are 
mainly due to the proxy, which is an additional entity between the 
client and the original application server. The proxy-based navi-
gation should then assure at least the same security level of the 
application server. 

The post-migration phase implies maintaining the state of the 
interaction session on the destination device, which can be owned 
by same the user that triggered the migration or by another user 
(e.g. a friend or a colleague). Here the point is preventing other 
devices (inside or outside the Platform) from accessing such  
session. 

5. MIGRATION PLATFORM SPECIFIC 
ISSUES 
The potential security lacks of the Migration Platform are due to 
the way in which data exchange takes place internally  and exter-
nally. 

Figure 2 shows an overview of the double-side communications 
across the Platform. Those referred to as internal side issues are 
related to the communication between the migration server and 
the clients (e.g., Proxy navigation, cookies exchange, migration 
involving multiple users). The external side comprises instead the 
issues that spring from data exchange between the migration 
server and the servers that host the original applications (i.e. the 
ones to which the clients are accessing).  

In the following, the main problems and the proposed solutions 
are discussed in detail. 

 

 

Fig. 2. Internal and external side communications across the 
Migration Platform. 

 

5.1 Internal side security 
5.1.1 Proxy navigation and security 
An extreme strategy to provide navigation security would consist 
in always accessing the proxy via HTTPS. This solution might 
technically provide the highest security, but is considered to be 



inefficient because the usage of HTTPS tends to decrease data 
communication rate, with an overall decreasing of the usability of 
the migration environment. A more recent investigation, dis-
cussed in [7], has proposed techniques for speeding up crypto-
graphic algorithms. However, this solution is still at a preliminary 
stage for general adoption. In general, HTTPS still impacts on the 
performance and thus we have adopted a solution in which the 
proxy uses the HTTPS protocol at run-time according to the pro-
tocol used by the application server. The proxy is accessed via 
HTTPS whenever the application server should be accessed 
through it. For instance, a home banking Web site can be initially 
accessed via HTTP, since the main page is originally available via 
HTTP. As soon as the user logs in, then a HTTPS request is sent 
by the client browser to the proxy and, accordingly, this request is 
forwarded through HTTPS by the proxy to the application server, 
and likewise the answer from the application server is transmitted 
to the client through the proxy still in HTTPS protocol.  

5.1.2 Cookies management  and security 
The proxy introduces some issues concerning the management of 
the application cookies. The application server considers the 
proxy as its client, but multiple users can concurrently access 
their applications through the proxy. Such users should thus be 
considered differently by the application server. A possible strat-
egy consists in allowing the proxy to forward the cookies received 
from the Web application server to the client. The proxy annotates 
the name field of each cookie by appending the application server 
domain before forwarding it to the client. This is done in order to 
keep trace of the original cookie domain, so that the proxy is 
subsequently able to recognize which Web application each cook-
ie belongs to. The client browser can then locally store each cook-
ie, while the proxy does not keep any of them. For the client 
browser, all the updated cookies are actually referred to the do-
main of the proxy. Such a strategy is completely decentralized as 
the cookies are locally stored by the clients, and does not require 
any additional storage space on the proxy. However, the strategy 
is also highly inefficient because the client browser appends all 
the previously saved proxy cookies to every subsequent request to 
the proxy. It is worth noting that the Migration Platform allows 
any user to navigate several pages at the same time, and thus 
manages an arbitrary number of cookies. Within this strategy, 
most of the forwarded cookies are useless, as the proxy restores 
the original cookie names and only forwards the cookies belong-
ing to the domain of the original application server. 

An improved and more efficient mechanism for cookies manage-
ment has thus been developed and is completely proxy-centered. 
The application cookies are not sent to the client but are instead 
saved in an entity, named cookie store, in the proxy. The cookie 
store keeps the cookies name/value/domain and the reference to 
the owner client (which is always a subscriber to the Migration 
Platform). Each client is bound to its previously stored application 
cookies by a proxy session cookie, which is a token generated by 
the proxy Web server and stored on the client browser. The head-
er of every client request to the proxy contains the proxy session 
cookie. The proxy uses its session cookie as an index to the cook-
ie store section of the user. In the following, we refer to the appli-
cation server cookies as application cookies, and to the proxy 
session cookies as proxy cookies. 

The theft of a proxy cookie would let an intruder access all the 
application cookies of the user. As a consequence, the intruder 
could exploit the application cookies to reproduce the user session 
interacting with the application server of banks, email, etc. A 

possible option to protect the proxy cookie would be to always 
exchange it via HTTPS. However, as already mentioned, this 
strategy impacts the navigation efficiency. Several pages can be 
navigated at the same time on the client, and such active pages 
would forward their requests to the proxy in a nondeterministic 
manner. Thus, the usage of a unique session id is also unsuitable 
for the proxy. We have excluded the possibility to use the client 
IP address as unique user identifier, since the device IP can 
change dynamically in some cases. The Migration Platform is 
indeed accessible by mobile devices, which often switch from one 
network to another (thus changing their address). 

For the previously mentioned reasons, the navigation proxy cook-
ie, which identifies the user session, has been chosen to be 
HttpOnly (i.e. it cannot be read by scripts) and constant, but addi-
tional controls are performed by the platform. For every request, 
the proxy checks whether the browser user-agent is consistent 
with the one stored at login time and, if not, the request is reject-
ed. After this first check, in the event a resource is requested via 
HTTPS, the proxy performs an additional control on the 
JSECURE cookie set up at login time. Details on the JSECURE 
cookie generation are provided in the next section.  

HTTPS navigation via proxy occurs, as previously stated, only 
when the application server requires the SSL usage (e.g., when 
private data are going to be exchanged). Thus, sensitive data can 
be safely exchanged via proxy. 

5.1.3 Shared resources in migration 
The possibility of sharing information and Web interactive appli-
cations among several devices, is a major feature of the Migration 
Platform. When a Web page is migrated, a copy of the page is 
created and stored on the Migration Platform server. As soon as 
the migrated page is available, the Migration Client of the target 
device is notified in order to open the page in the browser. A way 
for notifying the target device is to send back, via Ajax, the refer-
ence of the migrated page, which is actually the URL within the 
Migration Platform server. This solution was adopted by the first 
Migration Platform prototype, because it was considered to be 
simple and effective. In detail, the URL string was contained in 
the response of the Ajax request periodically performed by the 
Migration Client, which updates the device presence and checks 
for incoming migration pending. An initial security analysis re-
vealed the risk of passing a URL unencrypted through an HTTP 
response: an attacker could get the URL by simply listening to the 
network communications, and then use it to access the migrated 
page on the Migration Platform server. 

As previously discussed, the proxy navigation is considered to be 
secure. Indeed, when HTTPS connections are performed via 
proxy, the secure cookie created during user login is used. Thus, 
even if intruders got access to the migrated page, they would not 
be able to perform secure navigation, because they do not own the 
right secure cookie. However, the consequences of a similar at-
tack lie in the possibility of the intruders to perform unauthorized 
operations or acquire sensitive data even from the single migrated 
page. It should be considered that the migrated page could contain 
the balance of a personal bank account. It is thus desirable for the 
Migration Platform to protect the Web pages during and after (as 
well as before) the migration process. 

To protect the migrated pages from unauthorized access (i.e. from 
being accessed by unentitled users), we have developed a dedicat-
ed functionality that provides the target page content as response. 
In detail, instead of the migrated page URL, a special command is 



passed back to the Migration Client. Such a command triggers the 
invocation of a special service, named loader, which loads the 
target HTML document and writes its content on the response. 
The Migration Client of the target device gets the response con-
tent and shows it on a new window. Such a procedure is carried 
out only after successful authentication of the client, as the loader 
service will actually provide the page content only if the JREG 
cookie of the client is consistent with the one related to the actual 
target. The target device is indeed registered and active (i.e. the 
user has already logged in). More details on the JREG cookie are 
provided in the next section. 

5.1.4 Migration and HTTPS 
Migration is usually performed via HTTP. The HTTPS protocol is 
used only when the user explicitly chooses to rely on the secure 
connection, or when the Platform automatically detects security 
implications on the page. As for the discovery protocol, the rea-
son why we have chosen not to perform always via HTTPS lies 
on its performance limitations. 

The automatic detection of security implications consists of 
checking whether: (1) the page protocol is HTTPS, (2) the docu-
ment contains at least one form which “action” field is under 
HTTPS or (3) the document contains at least one input of type 
“password”. The first condition reveals whether the page was 
originally considered to deal with sensitive data. The second and 
the third, instead, stem from the peculiarities of the Platform 
architecture, and in particular from the strategy of forwarding the 
page DOM and its state from the originating to the destination 
device. The serialization, in order to ensure state persistence, 
includes the values contained in form fields. If a page is under 
HTTP but contains a form which “action” is under HTTPS, then it 
will send the form content via HTTPS when the “submit” is trig-
gered in order to protect the form field values (e.g., userID and 
password during a login). The Migration Platform, besides 
providing navigation (proxy) security, has also to assure the con-
fidentiality of the values within the forms with HTTPS “action”, 
since those values were originally designed to be exchanged via 
HTTPS. 

If one or more of the three mentioned conditions are verified, then 
migration is performed via secure protocol. In this case, the DOM 
serialization and the state of the page are forwarded to the plat-
form through an HTTPS POST. The target page is then opened 
via HTTPS and the values of the JavaScript variables are also 
loaded via HTTPS (this is because sensitive data might be con-
tained by script variables which have been “frozen” at migration 
time). 

It is worth pointing out that the user can in any case require that 
the secure protocol is used for migration, just checking the associ-
ated option when the migration is triggered. This is because, even 
if the page is under non-secure protocol and has not HTTPS 
forms, it could contain information that the user might not want to 
be captured (e.g., parameters for advanced search forms, results of 
an online item search, or anything s/he considers as confidential), 
and this is particularly true for dynamic pages. 

5.1.5 State persistence and security 
A requirement of the migration process is the state persistence: 
when the migrated page is opened in the target device, the result 
of the interactions performed in the source device has to be main-
tained. The page state includes form fields content, JavaScript 
variables value and the cookies related to the Web page domain. 

The problem is that users can change device and still would like 
to benefit from the associated cookies for the current application. 

As already discussed, although the application cookies are not 
stored in the client devices, the user can indirectly access them 
through the Migration Platform. The proxy is indeed aware of the 
correspondence between the user and the original cookie(s) value 
for the requested domain. When a migration is triggered, the 
external cookies of the source internal session are bound to the 
target internal session. This is implemented by creating a refer-
ence, in the cookie store, from the internal session of the target 
device to the internal session of the source device. 

From the point of view of the users involved in the migration 
process, two cases can occur: the single user and the multiuser. 
Security drawbacks could arise from totally copying the cookies 
in the multiuser migration, when the application can migrate to a 
device owned by another user. Thus, in this way, the target device 
can access all the application cookies owned by the user of the 
source device. In detail, the user accessing the target device not 
only accesses the application cookies related to the migrated Web 
page, but all the cookies that were bound to the user accessing the 
source device since the beginning of the session. 

There is more than one possible alternative solution to manage 
source cookies in multiuser migration, according to the level of 
protection. An option provides the target with all the cookies 
within the domain of the migrated page. An example scenario 
involves the subscriber of some service (user A) that needs to 
temporarily allow a friend/colleague (user B) to access the ser-
vice. User A performs authentication on the application and mi-
grates the resulting page to the device of user B. It is then possi-
ble, for user B, to navigate throughout the pages of the service, 
since s/he has got all the application cookies for that domain. User 
B would not be entitled to modify user A credentials, as s/he 
would be requested to insert the original ones (which s/he does 
not know). A more restrictive option consists on providing only 
the cookies related to the current path of the domain to the target 
device. This would be aimed to allow the target user to exploit 
functionalities or access information restricted to the page(s) in 
the path of the source one. The main limitation of this option is 
that the cookies of common Web applications usually do not 
define the “path” field. An extreme possibility is not to copy any 
cookie. 

We adopted a solution where the privacy level is specified at 
migration time by the user. The user can choose to share with the 
target user(s): i) all cookies, ii) only those related to the domain, 
iii) only the domain ones specific to the current page path, iv) 
none. 

5.2 External side security 
The security issues in the communication between the platform 
proxy and the Web application servers were the first ones to be 
tackled. It was initially clear that the proxy had to be able to per-
form secure connections in compliance with the applications 
requirements. Indeed, Web applications often exchange data with 
clients via the HTTPS protocol, even if their domains are usually 
accessed via HTTP. This is done by the application server in 
order to protect sensitive user data against third party sniffing. For 
instance, the user login credentials as well as credit card details 
are typically sent via HTTPS. 

The proxy of the Migration Platform is able to connect to any 
server via HTTPS, as well as via HTTP. The connection is man-



aged by a library that fully implements all HTTP methods and 
supports encryption with HTTPS protocol [11]. In practice, the 
level of security in the external communication is determined by 
that requested by the application. 

The cookie transfer from the proxy to the application server is 
another aspect that involves the external side communication 
security. However, as previously discussed the Platform is able to 
keep the correspondence between users and application cookies. 
Thus, given a Website X for which user A has got a cookie 
(which is saved in the cookie store of the Platform), another user 
B would in general not be able to exploit that cookie. The only 
situation that implies cookies sharing is the multi-user migration, 
where the originating user explicitly chooses to copy her cookies 
into the session of the destination user. 

6. OTHER SECURITY ISSUES OF THE 
MIGRATION PLATFORM 
The main Migration Platform operations, such as login, profile 
update, migration request, are explicitly performed by the user 
through the Migration Client. Other operations, such as the ex-
change of device discovery messages (e.g., user/device presence) 
with the platform, are periodically and automatically done by the 
Migration Client. 

The aim of the login is to protect user personal data, and infor-
mation and resources of other subscribers who are in relationship 
with the user (and to which intruders would not be entitled to 
access otherwise). It would be possible for anyone, especially in 
public networks, to sniff the packets exchanged between the Mi-
gration Client and the login servlet. Thus, if the data were ex-
changed “in clear”, the login credentials could be stolen. This is 
why the Migration Platform exploits the Secure Socket Layer 
(SSL) of the HTTPS protocol during the main user operations, so 
as to reduce the risk of eavesdropping. 

The login on the platform is carried out via HTTPS, thus protect-
ing the user credentials against sniffing. However, as discussed in 
the previous sections, intruders may also exploit session sidejack-
ing by listening to the network packets and extracting the session 
cookies from the headers. A possible way to overcome this prob-
lem could be to perform all the operations via HTTPS. However, 
differently from the login operation (which is performed once per 
session), the device discovery protocol operations are repeatedly 
performed in real-time. The discovery basically consists on send-
ing periodical “update” requests to the Platform. The Migration 
Client of each logged device announces its state every few se-
conds. As a consequence, the solution of using the HTTPS proto-
col for device discovery is technically feasible but would have 
heavy drawbacks on efficiency. 

Although the discovery is performed through non-secure protocol 
(HTTP), we have defined mechanisms for controlling the access 
to the Platform functionalities. Regarding the operations allowed 
to registered users, we have opted for a non-secure and unique 
session cookie, referred to as JREG. The uniqueness of JREG is 
aimed at improving the security and refers to the possibility of 
using the cookie only once. Thus, an intruder is very unlikely to 
capture the cookie and reuse it to act as the owner user since a 
second usage of the unique JREG cookie would not be allowed by 
the Migration Platform. The uniqueness is obtained by appending 
an increasing timestamp to the cookie. This is achieved by the 
Platform that, upon user login, calculates the JREG by concate-
nating the deviceID and the output of the HMAC (Hash-based 

Message Authentication Code) function. The usage of a hash 
encoded function is necessary to assure the following features: 
confidentiality, since data sent are private and thus it is better not 
to send them unencrypted; integrity, the hash function applied to 
the cookie returns a different value if the cookie is modified by 
third parties. The deviceID modification is an example of possible 
attack attempt; uniqueness, only one encoded string refers to a 
specific character sequence. 

A similar strategy for improving cookie security is also reported 
in [9]. It is worth pointing out that there is the possibility for an 
intruder to use the stolen cookie before the owner. As a conse-
quence, if the cookie were used for authentication the system 
would reject the access of the real user and would authenticate the 
intruder. In order to limit such risk, the HttpOnly attribute is set to 
the JREG cookie, thereby making it inaccessible to malicious 
scripts. This solution avoids the cookie theft by means of Cross-
site scripting (XSS) attacks 

An additional strategy, aimed to limit the consequences of cookie 
theft, exploits a complementary cookie named JSECURE. The 
Migration Platform login servlet, at login time, generates the 
JSECURE cookie with secure and HttpOnly attributes set as true. 
In addition, the secure attribute allows the cookie to be exchanged 
only via HTTPS (thus providing additional protection against 
thefts). Operations involving the exchange of personal user data 
are always performed via HTTPS (e.g., profile update), and for 
each of those sensitive operations, the system checks the con-
sistency of the incoming JSECURE cookie. Thanks to such a 
check, the intruder is unable to perform any malicious operation 
because s/he does not know the actual JSECURE value. The real 
user would instead be able to re-login at any time, gaining full 
access to the system. 

In order to achieve uniqueness and unpredictability, the session 
cookies are generated as message digests. The SHA-256 algo-
rithm (from the javax.crypto package) is applied to a random 
number generated through SHA1PRNG algorithm of the Java 
SecureRandom class (from the java.security package).The 
JSECURE cookie instead, being secure and HttpOnly, is highly 
protected against thefts, thus the intruder is unlikely to know it. 

The above mentioned strategies, as already stated, do not exclude 
the possibility of attacks but limit them and their consequences. 

A protection against the brute force attack is also achieved by 
limiting the number of access attempts that can be performed 
within a specified amount of time. 

The proxy servlet for navigation could be affected by code injec-
tion if an inconsistent URL were passed as a parameter of the 
GET/POST method with the aim to exploit some control weak-
ness. For instance, if a bad string is passed as URL to the proxy 
and the exception stack is printed (e.g., in the error page), the 
attacker can even obtain information about the system source 
code. In the current prototype, the proxy is protected against code 
injection by enhanced robust controls on the input URL and by 
safe handling of the server-side exceptions (stack trace printing is 
disabled). Regarding code injection within other user operations 
(e.g., profile update), such risk is implicitly avoided as the sub-
scribers’ data are stored in an XML database (which is not subject 
to code injection). 

If authentication controls were performed client-side, i.e. by the 
JavaScript, a potential script interpretation attack against the 
Migration Platform could be done by creating a modified version 



of the Migration Client. The modified Migration Client would 
skip the authentication controls with the aim to perform forbidden 
operations or to get sensitive information (e.g., monitoring the 
activity of other users, for which the intruder would not have the 
privileges). Such an intrusion, aimed to trick authorization con-
trols, would lead to a series of authorization attacks: the intruder 
could be able to interfere with the user device functionalities by 
even overriding the controls on incoming migration privileges 
specified by a user. Thus, the intruder could migrate a malicious 
Web page towards the user device. However, such risks are 
avoided in the Migration Platform because all the authentication 
and, consequently, privilege checks are performed server-side. 

The Migration Platform does not allow a session id (e.g., a session 
cookie) to be passed through URL, thus session fixation attacks 
do not concretely threat the Platform. 

7. AN EXAMPLE OF APPLICATION OF 
SECURE WEB MIGRATION 
Personal information is often contained, in different ways, on a 
Web page that is being migrated. Such data can lie in the docu-
ment source code, such as in the shopping cart summary page, or 
can have been explicitly entered by the user during the interaction 
with the page.  

As mentioned in Section 4, migration is carried out by serializing 
the Document Object Model (DOM) available in the source de-
vice browser. The DOM actually includes the values of the form 
fields filled in by the user. In order to understand how this affect-
ed the security of the preliminary Migration Platform, it is suffi-
cient to consider a simple scenario: the user is creating a personal 
account on a social network, through non-secure connection (see 
Figure 3), while s/he decides to trigger migration towards another 
personal device. The migrated page contains the partially filled 
form, including the personal email and password. Thus, although 
the form action value is “secure”  (i.e. an HTTPS address), sensi-
tive data would have been exchanged without any encryption 
between the client device and the Migration Platform. This would 
happen because the form page was accessed through HTTP, even 
if the form submission would have forced the browser to switch to 
a HTTPS connection. 

 

Figure 3. An example of registration form filled with personal 
data within a page under HTTP. 

In the security-enhanced version of the Platform, at migration 
time, the Migration Platform is able to automatically detect the 
presence of sensitive data and to act properly. If the page is navi-
gated through HTTPS, then migration is performed through 
HTTPS. If the page is navigated through HTTP, a search for 
secure forms is done within the document. If the page has one or 
more secure forms and if at least one input field is filled, and/or if 
it contains an input of type “password”, then a secure migration is 
performed. 

The security control on the migrated page is performed when 
migration is carried out by the scripts injected in by the proxy at 
navigation time. The motivation of distinguishing among secure 
and non-secure migration lies in the performance: secure migra-
tion is indeed more time-consuming, thus it is reasonable to mi-
grate via HTTPS only in the case of security concerns. 

 

 

Figure 4. A sequence diagram showing the main communica-
tions involved in secure migration. 

 

Figure 4 summarizes the main communications that take place 
when a Web application is navigated via proxy through HTTPS, 
and when it is migrated. Black continuous arrows indicate HTTP 
communications, while red dotted arrows refer to HTTPS ones. 
Client A initially authenticates in the Migration Platform and 
requests the Website home page. While performing login in the 
home page, the user is redirected to a HTTPS address and contin-
ues navigating the personal pages via proxy. Upon request, the 
platform performs a secure migration, thus acquiring the source 
DOM from the source device and forwarding it to the target de-
vice (Client B) through HTTPS. It is assumed that Client B had 
already performed authentication, in the same way as described 
for Client A. The user then continues the navigation through the 
target device, still via proxy within HTTPS connection. 



A technological issue, known as cross-domain exception arose 
when a secure migration was triggered for a non-secure page. The 
reason is in the different domains between the page and the secure 
address of the migration servlet (HTTPS protocol, e.g., 8443 
port): the page is indeed accessed via the conventional platform 
address (HTTP protocol, e.g., 8080 port). In order to solve this 
issue, we have enabled the CORS (Cross-Origin Resource Shar-
ing) support [4] in the Migration Platform. CORS is a W3C 
standard specification for authorizing a browser window to ex-
change messages (e.g., through Ajax) with different domains. 

 

8. VALIDATION OF SECURE 
MIGRATION 
In order to validate the secure migration, we have carried out two 
tests. A first one was aimed to check that the Platform is able to 
provide interaction continuity when accessing pages migrated via 
HTTPS. A second  test was devoted to quantify the overhead of a 
migration performed via HTTPS with respect to HTTP. 

8.1 Preliminary tests 
The aim of the initial tests was to ensure that the Platform pro-
vides interaction continuity, i.e. full state persistence. The conti-
nuity is assured only if the results of user interaction are pre-
served, and these include content of filled forms, session and 
other cookies. With this first test session we thus checked that, 
after migrating a Web page via secure protocol, the user was 
actually able to continue the navigation from the target device 
without losing the original session (i.e. without having, for in-
stance, to re-log in the Web application or to re-add the items to 
the shopping cart). 

We considered some of the most visited Web pages (according to 
the ranking of http://www.alexa.com) and tested the Migration 
Platform on them, with the aim of  validating the secure support. 
The following list summarizes the operations performed on the 
tested Web applications: 

 

 google.com (Gmail): the login page and the email composition 
on the user personal page were migrated, preserving access 
credential, cookies and email form content (email title and 
body). 

 eBay.com: the account creation page was migrated, and the 
user data (such as name, surname, username, password) were 
maintained. 

 amazon.com: the shopping cart content page was migrated 
with cookies persistence (selected items were maintained). 

 wordpress.com, youtube.com: the login page was migrated 
preserving user access credentials. 

 paypal.com: the form for sending a payment was migrated, and 
the cookie as well as the form field content were maintained 
(payment amount and beneficiary). 

 facebook.com: the login page was migrated with the user cre-
dentials form content. 

 ryanair.com: the flight reservation form, including user per-
sonal details (name, surname and address) and credit card data, 
was migrated. 

 

After each Web migration, navigation was performed in the target 
device, in order to verify the state persistence. Although many of 

the tested pages were in the cross-domain situation (i.e. pages in 
non-secure address but migration performed via HTTPS) the 
migration worked in all cases thanks to the use of the CORS 
support. 

 

8.2 Performance tests 
The main aim of this test session was to have an indication of the 
cost in terms of additional time, in the case the user chooses to 
perform a migration via HTTPS rather than HTTP. In this case we 
only consider the HTTP REQUEST  through the post METHOD, 
which is carried out for the transmission of the DOM and the 
associated state. 

Five international well-known Websites were chosen for quantify-
ing the impact of the secure protocol on such migration perfor-
mance. The pages considered were originally accessible via 
HTTP. It is worth noting that it would not have had sense to con-
sider HTTPS pages in the test, since in that case the Platform 
would have automatically performed migration via HTTPS (i.e. 
the user is not allowed migrate a secure page in non-secure man-
ner). The test took place in laboratory, the source device was a 
desktop PC (with wired connection) and the target was a laptop 
(with wireless connection). 

Table 1 summarises the results of the technical test. For each 
input page, migration was tested 10 times in HTTP and 10 times 
in HTTPS. The average times for the two migration modalities 
and the average difference are reported in Table 1. The time 
measurement started when migration was triggered on the source 
device and ended when the redirect message was sent to the target 
device. 

 

Input page Average time (s) 

Domain Description 
Size 
(KB) 

HTTP HTTPS 
Overhead 
(%) 

Venere.com 
Search hotels –
15 results 

173 1,072 1,157 7,9 

Bbc.co.uk 
Business 
homepage 

202 0,717 0,774 7,9 

Ebay.com 
50 items 
search results 

478 1,524 1,550 1,7 

Amazon.com
Search books –
12 results 

550 1,534 1,638 6,8 

Google.com 
advanced 
search - 100 
results 

601 3,105 3,576 15,2 

Mean 400 1,6 1,7 7,9 

Standard Deviation 200 0,9 1,1 4,8 

Table 1. Summary of the technical test results. 

 

According to the tests results, the migration time varied between 
about 0,7 and 3,6 seconds, according to the page and the protocol 
used. As expected, the HTTP was always faster. However, the 
difference was not so high as the HTTPS overhead varied be-
tween 1,7% and 15,2% and was, on average, less than 8%. Thus, 



in the case a user feels that a page under HTTP contains confiden-
tial data and chooses to perform migration via HTTPS, the impact 
of the secure protocol on the overall time is reasonably low. 

 

9. CONCLUSIONS AND FUTURE WORK 
We have presented an analysis and discussion of the security 
issues involved in client-server support for migration of interac-
tive Web application and how they can be addressed. We have 
also reported on how such results were applied to an existing 
proxy-based migration platform, which did not address them 
previously. In addition, the techniques that we have proposed can 
also be applied to other platforms that are not specifically aimed 
at migrating Web applications but are characterised by a similar 
proxy-based architecture.  

The results have also been validated by testing various widely 
known Web applications to check that they effectively migrate 
with state persistence while exploiting the security support. 

Future work will be dedicated to further empirical usability evalu-
ation of the security mechanisms introduced in the Migration 
Platform. 

Alternative architectures for the described Migration Platform, 
such as cloud-based architectures, will be considered. For in-
stance, the Platform Proxy could be transparently replicated by 
delegating its management to a third party (i.e. a provider). On the 
one hand, this strategy can lead to better scalability of the perfor-
mance, as there could even be one proxy instance for each Plat-
form user. On the other hand, security might be improved as well, 
since if a proxy were successfully attacked, the intrusion conse-
quences would affect only the “owner” user of that single proxy. 

 

10. REFERENCES 
[1] Alt, F., Kubitza, T., Bial, D., et al. Digifieds: insights into 

deploying digital public notice areas in the wild. Proceedings 
of MUM’11, ACM Press, pp. 165-174. 

[2] Arthur, R., Olsen, D.R. Privacy-aware shared UI toolkit for 
nomadic environments. Software – Practice and Experience, 
2011, 42:601-628.. 

[3] Chang, T.-H., Li, Y. Deep Shot: a framework for migrating 
tasks across devices using mobile phone cameras. Proceed-
ings of CHI 2011, ACM, pp. 2163-2172. 

[4] Cross-Origin Resource Sharing. W3C Working Draft 27 July 
2010. http://www.w3.org/TR/cors/. 

[5] Ge, X., Paige, R.F., Polack, F.A.C., Chivers, H., Brooke, 
P.J.: Agile development of secure web applications. Proceed-
ings of ICWE ‘06, ACM, pp. 305-312. 

[6] Ghiani, G., Paternò, F. Santoro, C.  Push and Pull of Web 
User Interfaces in Multi-Device Environments. Proceedings 
of AVI 2012, ACM New York, pp. 10-17. 

[7] Kounavis, M., Kang, X., Grewal, K., Eszenyi, M., Gueron, 
S., Durham, D. Encrypting the internet. SIGCOMM ‘10, 
ACM, 2010, pp. 135-146. 

[8] Li, J., Jia, Y.,  Liu, L., Woa, T. CyberLiveApp: A secure 
sharing and migration approach for live virtual desktop ap-
plications in a cloud environmentFuture Generation Comput-
er Systems, August 2011, Elsevier. 

[9] Liu, A. X., Kovacs, J., Huang, C.-T., Gouda, M. G. A Secure 
Cookie Protocol for HTTP. Proceedings of ICCCN 2005, 
IEEE, pp. 333-338. 

[10] Maurer, M., De Luca, A., Stockinger, T. Shining Chrome: 
Using Web Browser Personas to Enhance SSL Certificate 
Visualization. INTERACT (4) 2011, pp. 44-51 

[11] Org.apache.http.client library, 
http://hc.apache.org/httpcomponents-client-ga/ 

[12] Satoh, F., Tokuda, T. Security Policy Composition for Com-
posite Services. Proceedings of ICWE '08, IEEE, pp. 86-97. 

[13] Sharp, R., Madhavapeddy, A., Want, R., Pering, T. Enhanc-
ing Web browsing security on public terminals using mobile 
composition. Proceedings of MobiSys 2008, ACM, pp. 94-
105. 

[14] Sharp, R., Scott, R., Beresford, A.R. Secure Mobile Compu-
ting via Public Terminals. Proceedings of Pervasive 2006, 
Springer-Verlag Berlin, pp. 238-253. 

[15] The New Multi-screen World: Understanding Cross-Platform 
Consumer Behavior. Google Research Report, 2012. 
http://services.google.com/fh/files/misc/multiscreenworld_fi
nal.pdf 

[16] Yu, W., Li, J., Hu, C., Zhong, L. Muse: A Multimedia 
Streaming Enabled Remote Interactivity System for Mobile 
Devices. Proceedings of MUM’11, ACM, pp. 216-225. 

 

 

 


