

A Visual Environment for End-User Creation of IoT

Customization Rules with Recommendation Support

Andrea Mattioli & Fabio Paternò
 Human Interfaces in Information Systems Laboratory

 CNR-ISTI

 Pisa, Italy
 {andrea.mattioli, fabio.paterno}@isti.cnr.it

ABSTRACT

Personalization rules based on the trigger-action paradigm have

recently garnered increasing interest in Internet of Things (IoT)

applications. However, composing trigger-action rules can be a

challenging task for end users, especially when the rules’

complexity increases. Users have to decide about various aspects:

which triggers and actions to select, how to combine multiple

triggers or actions, and whether some previously defined rule can

help in the composition process. We propose a visual environment,

Block Rule Composer, to address these problems. It consists of a

tool for creating rules based on visual blocks, integrated with

recommendation techniques in order to provide intelligent support

during rule creation. We also report on a first test which provided

positive indications and suggestions for further design

improvements.

CCS CONCEPTS

•Human-centered computing→User interface programming;

•Information systems;

KEYWORDS

Trigger-action programming, Block-based programming, End user

development, Recommendation systems, Internet of Things

ACM Reference format:

Andrea Mattioli, Fabio Paternò. 2020. A Visual Environment for End-User

Creation of IoT Customization Rules with Recommendation Support. In

AVI ’20: 2020 International Conference on Advanced Visual Interfaces,

AVI ’20, Sept 28-Oct 2, 2020, Salerno, Italy. ACM, New York, NY, USA,

5 pages. https://doi.org/10.1145/3399715.3399833

1 Introduction and motivation

IoT devices are increasingly common nowadays. End-User

Development (EUD) is an approach that allows people to better

control this wealth of devices. Through EUD they can modify a part

of their applications to extend or change their possible behaviours.

Empowering users to act on the objects and devices that populate

their environment can be a step towards making them more

effective to improve the quality of their lives. To make a shift

towards a "culture of participation" [8] fully possible, designers

should work to provide technical infrastructure which support users

in the developing of appropriate critical thinking skills [7]. One

relevant approach to allow users to customize their IoT

environments is Trigger-Action Programming (TAP) [1, 9, 16].

TAP is an approach to EUD that allows people to define conditional

rules to customize the behaviour of environments in which IoT

sensors and actuators are present, possibly jointly with Web

services. This abundance of possibilities can entice users to

compose rules that go beyond the basic structure consisting of a

trigger and an action.

There are many possible temporal evolutions in the rules’

behaviour. A trigger can refer to the instant in which a change in

the environment occurs, or to a specific Boolean condition lasting

over a period of time. An action can be almost immediate (such as

sending a message), can be extended over a longer timeframe (such

as an utterance by a home assistant device), can achieve a change

in the state of the environment that persists until it is restored (such

as turning on a light or opening a window). Temporal aspects of

triggers and actions are “a crucial source of ambiguity for TAP”

[1]. For this reason, it is necessary to clearly define what these

temporal aspects are, and how the components of the rules can be

used. Even if other approaches (such as [5, 9]) allow the creation of

compound rules, the adequacy of an environment based on blocks

for this purpose has not been thoroughly investigated. Despite its

wide application (for example in [15, 18, 19]), the block-based

approach has not been particularly considered for TAP

programming. Some examples are [10, 13, 14]. Further

contributions in this area include [2], which is a Block based

language, where the graphical aspects of blocks are used to support

both the composition and the debugging phase. On the other hand,

[4] relies on the puzzle metaphor to permit the creation of mobile

applications, which may use IoT devices. With respect to these

contributions, we follow a different approach, with less constraints

on the editing of events and conditions, and with focus on the use

of blocks in TAP rules composition.

Furthermore, Recommendation Systems (RS) are not used in TAP,

except for a few cases [3, 12, 17]. An RS could be effective to

provide users with support through example rules that can be

relevant for their purposes. TAP systems can generate a vast

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from Permissions@acm.org.

AVI '20, September 28-October 2, 2020, Salerno, Italy

© 2020 Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-7535-1/20/09…$15.00

https://doi.org/10.1145/3399715.3399833

AVI '20, September 28-October 2, 2020, Salerno, Italy Andrea Mattioli and Fabio Paternò

amount of data regarding users and their environments, which

could be used to provide rule recommendations. We focus on data

about rules and user preferences, instead of sensor data, to discuss

the feasibility of an approach based on these features.

To summarize, the contributions of this work are our findings

regarding two research questions: RQ1: identify a block-based

visual representation that allows people to easily create structured

rules while also limiting issues in temporal interpretations, RQ2:

how to introduce a recommendation system for supporting rule

creation in this type of environment.

2 Design of the Visual Environment

After analysing the relevant literature and previous work, the

design phase began with the identification of a list of requirements

for the new proposed environment.

R1. Design of a flexible environment not tied to a specific

application domain. Flexibility should be pursued in the rule

composition, e. g. via suggesting through the user interface a

cause/effect mechanism without imposing a rule composition order

[5, 9].

R2. Easily express rules involving more than one trigger and one

action. Many useful behaviours definable through TAP rules need

greater expressiveness than that provided by a language limited to

rules with one trigger and one action [1]. However, the definition

of a language capable of expressing Boolean logic in a clear way to

non-technical users has not found optimal solutions [6].

R3. Use appropriate block-based graphical elements and fully

exploit both dimensions in creating and editing rules. The graphical

representation of the rule is an important factor to provide control

to the user during rule creation: composing elements of the rule

should be clearly supported [5].

R4. Mitigate the potential errors deriving from incorrect user

interpretations through visual clues. It has been reported [1] that

users tend to create incorrect mental mappings of the temporal

aspects of rules. The temporal features of events and states

(systematized in [11]) have to be clearly distinguished to prevent

errors.

R5. Suggest rules which can be of interest during rule creation. In

this regard, some aspects of RS need to be investigated further, such

as how to introduce support from a RS while creating the rule, how

to generate recommendations, and how to present them to user.

Figure 1: The main user interface of the editor.

One of the main aspects of the design phase was the definition of

the concepts to convey via a block-based visual representation. The

first concept was to express the inclusion relation between the

various parts of a rule. This aspect has been expressed via the shape

and the colour consistency of blocks, where the shape is used to

immediately express what is contained in a single rule, and its

components. Another important concept was modifiability,

something that refers to the possibility of defining specific aspects

of a block to better indicate its functionality. Given its optional

nature, this aspect has been communicated via checkboxes which,

when selected, change the shape of the associated block, adding or

removing fields. The two dimensions of the user interface have

been used to convey the distinction between sequential and parallel

actions: sequential actions are assembled placing blocks vertically

one after the other, parallel actions are represented by using a helper

block to enable the horizontal arrangement of the corresponding

blocks. To depict the logical composition of blocks, some operators

are available: and/or for triggers, sequential/parallel for actions.

The negation operator can be applied to a trigger using a checkbox.

There is also the possibility to define a group element in order to

compose elements according to the desired order in which the

operators are to be applied to the various triggers. The distinction

between triggers and actions is highlighted by colour. The rule

block has two separate sections, one for inserting trigger blocks,

one for action blocks. The “trigger” blocks are blue, and the

“action” ones are green. The same colour is used for the part of the

“rule” block indicating where triggers and actions can be inserted.

Blocks that define the composition and the behaviours of triggers

and actions (such as and/or/not operators, group and parallel) use

the same colour with a different saturation level. The same colour

distinction is used in the toolbox on the left (see Figure 1), from

which the blocks are selected.

Figure 2: The modal window which explain the differences

between event and state trigger.

The distinction between event and state type triggers is a main

source of ambiguity for users. To mitigate this problem a modal

window is shown every time a user selects a trigger type block. This

window aims to illustrate as clearly as possible the event/state

distinction. For each type, an appropriate icon (using the same

representation proposed in [11]), a description of the temporality it

models, and two possible cases are shown (see Figure 2). The

different representations used for events and conditions in the

modal window are then maintained on the trigger blocks in the

workspace. When a user chooses “event” or “condition” from the

presented modal window, the previously selected trigger block is

added to the workspace, with the associated temporal block placed

within it. The selection result is represented by text chunks added

A Visual Environment for End-User Creation of IoT … AVI '20, September 28-October 2, 2020, Salerno, Italy

dynamically on the trigger block, to create a quasi-natural language

description of the trigger type, and by the associated icon (see

example in Figure 3). The distinction between action types

(immediate, extended, sustained) is indicated through tooltips on

the corresponding blocks. Actions can also have specific behaviour

when associated with a state trigger. Based on previous experiences

(e.g. [1]), users may expect that, besides acting on a device upon

activation of the rule, an action will act on it again at the end of the

related state, restoring the device’s previous state. This different

type of action can only occur when state type trigger is selected,

and the action provokes a change in the state of a device (sustained).

To comply with this possible way of thinking, when these

conditions are met, an icon representing two arrows is placed on

the actions block (see the second "rule" block in Figure 3, which

contains an action with the "revert" icon). This icon indicates that

the action will behave as a “revert” action, e. g. turning on a light

when the condition starts, tuning it off when it ends.

Figure 3: Two rule blocks illustrating example of event and state

trigger and the two different rule behaviours (standard and with

revert action).

After a paper mock-up prototyping phase, design ideas were

implemented via Blockly, a Javascript library to allow developers

to implement visual editors for predefined or custom languages.

The main page of the editor (see Figure 1) consists of:

- A toolbox: placed on the left of the screen, which contains the

available trigger and action hierarchies, and the associated

operators.

- The main workspace: the area where users compose and edit

rules via drag-and-drop.

- A secondary workspace: another workspace which contains

the rule suggested by the RS (as an example or accepted and

moved to the main workspace). Over this area a dropdown list

contains the links to generate a suggestion and to move the

suggestion to the main workspace.

- A toolbar: it contains a list of utility buttons for the main

operations possible on the editor (save and get saved rules,

make syntactic check on the rule being edited, export it as

XML), the name of the current logged user, and a text area,

which updates at each click on a block, and shows information

about how to use it.

The editor relies on a server from which it receives the JSON

description of triggers and actions available, which is used to

generate the graphical elements that populate the toolbox. In the

tool version considered in this paper the trigger hierarchy is

organized in dimensions (User, Environment, Technology), which

are then structured into categories. For example, the User

dimension contains, among others, the Physiological, Position and

Cognitive categories. The Cognitive category contains the Self-

Assessment Value, Emotional state, Cognitive state, Training

result, Training time and Last Connection Time triggers.

3 Recommending rules

A hybrid collaborative-content based RS has been designed and

implemented to generate suggestions for relevant rules. Rules, the

“items” to suggest, are not unitary entities, but are composed of

triggers, actions, and operators between them. Therefore, the

suggestion of a complete rule based on other full rules is an

approach that may not be completely relevant to support users

during rule composition, since it is not really driven by what the

user entered. In the proposed solution, recommendations are

presented considering the input provided by the user during rule

composition. The recommendation is generated after the click on

the “get suggestion” button, and built starting from the first trigger

inserted into the “rule” block by the user, hence from an incomplete

rule. This input is used together with a graph structure drawn from

the trigger part of the rules extracted from the available rules’

dataset. The trigger part of these rules is particularly relevant

because they are richer in information, hence potentially more

exploitable to obtain fruitful information than the action parts,

which in general consist of only one or two actions per rule. The

recommendation consists of a phase of graph creation, one of graph

traversing, and one of identification of a matching "action" part.

The graph creation phase begins by extracting those rules whose

first trigger value element equals to the element just entered by the

user. This node will also be the central starting node. To build the

graph, the rules are represented as sequences of transitions from a

trigger element (event/condition type, operators, trigger value) to

another. The resulting structure is a graph enriched with weights,

which are obtained by counting how many times a given transition

occurs in the extracted rules. This graph structure is then traversed

from the starting node following a preferential approach, to obtain

the trigger recommendation. Afterwards, the path between triggers

and operators resulted from graph traversing is matched with the

saved rules, to obtain an “action” part for the recommendation.

Three scores have been used as most relevant for identifying the

rules from which select the action part for the recommendation: 1)

the similarity between the user currently logged and all the other

users in terms of rules created, using the Person correlation on the

user/action matrix; 2) the similarity between the partial rule

obtained with the previous “graph traversing” method and the

trigger part of the other rules stored in the rule repository via a

modified Jaccard index; 3) the number of adoptions of the action

part of the stored rules. The action part of the rule that maximizes

these three scores is joined to the trigger part obtained via graph

AVI '20, September 28-October 2, 2020, Salerno, Italy Andrea Mattioli and Fabio Paternò

traversing and suggested as a complete rule to the user. It is

displayed in the secondary workspace on the right, which can be

used as a reference or moved into the main workspace.

4 Discussion and Conclusions

The first user test involved 12 people, without previous experience

with personalization systems and programming (3 with basic

knowledge of HTML and CSS, 9 without any experience). The

participants were introduced to the test goals, and the main

functionalities of the editor were shown to them. A scenario was

also described to them, to illustrate a possible use situation. The

proposed scenario referred to the creation of personalization rules

for an elderly relative who lives alone, to improve her life comfort.

Overall, this introductory phase took about 20 minutes. Afterwards,

they could freely try the platform without time constraints. Finally,

they had to carry out five tasks:

T1) Compose a simple rule with an event and an action.

T2) Compose a rule with two triggers and one action.

T3) Compose a rule with a trigger and two sequential actions.

T4) Compose a rule that changes the state of a device as long as the

condition lasts, then restore the initial condition.

T5) Start a rule freely, complete it by using the RS.

Some rules created during the execution of the tasks are:

1) When (event) daily steps become more than 500 => send

notification to Elderly – send SMS to Caregiver

2) When (event) emotional state becomes Discouraged –

and – if (condition) type of proximity is Inside Living

room => start Living room Biorhythm Light

3) If (condition) Time is between 20:30 and 00:00 – and –

When (event) Living room temperature becomes < 18 =>

send a notification to Elderly

Time recordings show that T1 (M = 73.9 s, std. dev. = 23.8 s) and

T5 (M = 87.5 s, std. dev. = 30 s) were the fastest tasks, whilst the

T2 and T3 were more problematic (M = 159.6 s, std. dev. = 91.1 s

for the former and M = 116.3 s, std. dev. = 62 s with 2 errors for

the latter). T4 yielded the worst performance (M = 176.8 s, std. dev

= 79.2 s, with 5 errors). Further information was obtained by a

post-test survey. It regarded quantitative assessments to be

evaluated on a 5-points scale about specific aspects of the

environment. Block metaphor, the creation of simple rules and the

distinction between events and states were well received by users

(4.5 on 5 on mean, standard deviation = 0.67 for all three). Also,

the results of RS (M = 4.36, std. dev. = 0.67) and the distinction

between sequential and parallel actions (M = 4.08, std. dev = 1)

were appreciated. The use of logic operators for complex triggers

was instead found a bit more problematic (M = 3.75, std. dev. =

1.29). Also, the distinction between standard actions and actions

with a “revert” behaviour was not very easily understood (M = 3.5,

std. dev = 0.9). Participants were positive how to use the editor

autonomously after only one first session (M = 3.58, std. dev =

1.31). More insights emerged from observations of user behaviours

during the test and from open questions. Users reported

appreciating the specific composition aspect, the representation of

blocks, and the support it provides:

- “You can see the construction of the rule as if you were doing

it with Lego”.

- “Speed of the block composer, possibility to rearrange the

composition”.

- “Blocks are intuitive”.

- “I like blocks and their colours”.

- “Simplicity of the association between trigger and action, ease

of use of and/or/group connections”.

- “The distinction between trigger and actions indicated by

colours”.

- “The distinction between triggers and actions is well

organized”.

Regarding the composition of structured rules, some critical aspects

emerged from feedback and observations. The difference in the

composition between the trigger and the action part was reported as

a potentially problematic aspect by two participants, who expected

to find the same operators for both sides of the rule. Two other

participants had problems in correctly positioning a trigger

operator. Even though these problems can be solved by simply

adding a check on the block’s connections, they indicate potential

issues with how users perceive these concepts. Also, the task

regarding the distinction between “standard” and “revert” actions

was reported as difficult by six participants. A different and more

explicit representation of this behaviour can be useful.

Regarding the use of RS in tasks where it was not required, three

users reported having used it for checking which triggers and which

actions to use together with the ones already chosen, two to check

how to compose a structured rule, one to have feedback on the

created rule. The RS has been therefore used as a “discovery” as

well as a “support” tool. A more integrated RS in the environment

may be useful to further speed up its use, and better integrate results

into the work area. A different way to display results can be shown

in the suggestion workspace: the single blocks that can be used at a

given time in the rule construction (instead of the full rule at

request). This can be obtained via a background call to the RS

which can generate a suggestion concerning the last trigger

inserted. Then, instead of a full rule, only the blocks relevant to this

last trigger should be shown.

In conclusion, our research has confirmed the block paradigm as

appropriate for TAP. Regarding the first research question, using

explicit different indications to express the relevant concepts

resulted to be a valid method for helping users to understand the

event/condition difference. Furthermore, a colour distinction

appears to be an appropriate enhancement to point out the trigger-

action distinction in the editor. However, a visual representation

suitable to effectively describe complex rules has to be better

defined. Regarding the second research question, a methodology to

implement a RS for the trigger-actions rules in the IoT context has

been presented, and received positive feedback from first user tests.

Acknowledgements. This work has been supported by the PRIN

2017 EMPATHY Project, http://www.empathy-project.eu/.

A Visual Environment for End-User Creation of IoT … AVI '20, September 28-October 2, 2020, Salerno, Italy

REFERENCES

[1] Will Brackenbury, Abhimanyu Deora, Jillian Ritchey, Jason Vallee, Weijia He,

Guan Wang, Michael L. Littman, and Blase Ur. 2019. How Users Interpret Bugs

in Trigger-Action Programming. In Proceedings of the 2019 CHI Conference on

Human Factors in Computing Systems (CHI ’19). Association for Computing

Machinery, New York, NY, USA, Article Paper 552, 12 pages.

https://doi.org/10.1145/3290605.3300782

[2] Fulvio Corno, Luigi De Russis, and Alberto Roffarello. 2019. My IoT Puzzle:

Debugging IF-THEN Rules Through the Jigsaw Metaphor. 18–33.

https://doi.org/10.1007/978-3-030-24781-2_2

[3] Fulvio Corno, Luigi De Russis, and Alberto Roffarello. 2019. RecRules:

Recommending IF-THEN Rules for End-User Development. ACM Transactions

on Intelligent Systems and Technology 10 (09 2019), 1–27.

https://doi.org/10.1145/3344211

[4] Jose Danado and Fabio Paternò. 2012. Puzzle: A Visual-Based Environment for

End User Development in Touch-Based Mobile Phones. In Human-Centered

Software Engineering, Marco Winckler, Peter Forbrig, and Regina Bernhaupt

(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 199–216.

[5] Giuseppe Desolda, Carmelo Ardito, and Maristella Matera. 2017. Empowering

End Users to Customize Their Smart Environments: Model, Composition

Paradigms, and Domain-Specific Tools. ACM Trans. Comput.-Hum. Interact.

24, 2, Article Article 12 (April 2017), 52 pages. https://doi.org/10.1145/3057859

[6] Giuseppe Desolda, Carmelo Ardito, and Maristella Matera. 2017. Specification

of Complex Logical Expressions for Task Automation: An EUD Approach. 108–

116. https://doi.org/10.1007/978-3-319-58735-6_8

[7] Gerhard Fischer, Daniela Fogli, Anders Mørch, Antonio Piccinno & Stefano

Valtolina (2020) Design trade-offs in cultures of participation: empowering end

users to improve their quality of life, Behaviour & Information

Technology, 39:1, 1-4, DOI: 10.1080/0144929X.2020.1691346

[8] Gerhard Fischer. 2011. Understanding, fostering, and supporting cultures of

participation. interactions 18, 3 (May 2011), 42–53. DOI:

https://doi.org/10.1145/1962438.1962450

[9] Giuseppe Ghiani, Marco Manca, Fabio Paternò, and Carmen Santoro. 2017.

Personalization of Context-Dependent Applications Through Trigger-Action

Rules. ACM Transactions on Computer-Human Interaction 24 (04 2017), 1–33.

https://doi.org/10.1145/3057861

[10] T. L. Guilly, J. H. Smedegård, T. Pedersen, and A. Skou. 2015. To Do and Not to

Do: Constrained Scenarios for Safe Smart House. In 2015 International

Conference on Intelligent Environments. 17–24.

https://doi.org/10.1109/IE.2015.11

[11] Justin Huang and Maya Cakmak. 2015. Supporting Mental Model Accuracy in

Trigger-Action Programming. In Proceedings of the 2015 ACM International

Joint Conference on Pervasive and Ubiquitous Computing (UbiComp ’15).

Association for Computing Machinery, New York, NY, USA, 215–225.

https://doi.org/10.1145/2750858.2805830

[12] Hanjo Jeong, Byeonghwa Park, Minwoo Park, Ki-Bong Kim, and Kiseok Choi.

2019. Big data and rule-based recommendation system in Internet of Things.

Cluster Computing 22, 1 (01 Jan 2019), 1837–1846.

https://doi.org/10.1007/s10586-017-1078-y

[13] Bak Nayeon, Byeong-mo Chang, and Kwanghoon Choi. 2018. Smart Block: A

Visual Programming Environment for SmartThings. 2018 IEEE 42nd Annual

Computer Software and Applications Conference (COMPSAC), 32–37.

https://doi.org/10.1109/COMPSAC.2018.10199

[14] Daniel Rough and Aaron Quigley. 2017. Overcoming mental blocks: A blocks-

based approach to experience sampling studies. 2017 IEEE Blocks and Beyond

Workshop (B&B), 45–48. https://doi.org/10.1109/BLOCKS.2017.8120409

[15] Andrew Stratton, Chris Bates, and Andy Dearden. 2017. Quando: Enabling

Museum and Art Gallery Practitioners to Develop Interactive Digital Exhibits. In

End-User Development, Simone Barbosa, Panos Markopoulos, Fabio Paternò,

Simone Stumpf, and Stefano Valtolina (Eds.). Springer International Publishing,

Cham, 100–107.

[16] Blase Ur, Melwyn Pak Yong Ho, Stephen Brawner, Jiyun Lee, Sarah Mennicken,

Noah Picard, Diane Schulze, and Michael L. Littman. 2016. Trigger-Action

Programming in the Wild: An Analysis of 200,000 IFTTT Recipes. In

Proceedings of the 2016 CHI Conference on Human Factors in Computing

Systems (CHI ’16). Association for Computing Machinery, New York, NY,

USA, 3227–3231. https://doi.org/10.1145/2858036.2858556

[17] Beidou Wang, Xin Guo, Martin Ester, Ziyu Guan, Bandeep Singh, Yu Zhu, Jiajun

Bu, and Deng Cai. 2018. Device-Aware Rule Recommendation for the Internet

of Things. InProceedings of the 27th ACM International Conference on

Information and Knowledge Management (CIKM ’18) . Association for

Computing Machinery, New York, NY, USA, 2037–2045.

https://doi.org/10.1145/3269206.3272009

[18] David Weintrop. 2019. Block-Based Programming in Computer Science

Education. Commun. ACM 62, 8 (July 2019), 22–25.

https://doi.org/10.1145/3341221

[19] David Weintrop, Afsoon Afzal, Jean Salac, Patrick Francis, Boyang Li, David

Shepherd, and Diana Franklin. 2018. Evaluating CoBlox: A Comparative Study

of Robotics Programming Environments for Adult Novices. 1–12.

https://doi.org/10.1145/3173574.3173940

https://doi.org/10.1080/0144929X.2020.1691346

