
1
[Editor(s) here] (ed.), [Book Titlen here], 1—8.
© 2006 Kluwer Academic Publishers. Printed in the Netherlands.

HENRY LIEBERMAN, FABIO PATERNÓ, MARKUS KLANN,
AND VOLKER WULF

END-USER DEVELOPMENT: AN EMERGING
PARADIGM

We think that over the next few years, the goal of human-computer interaction will
evolve from just making systems easy to use (even though that goal has not yet been
completely achieved) to making systems that are easy to develop. By now, most
people have become familiar with the basic functionality and interfaces of
computers. However, developing new or modified applications that effectively
support users' goals still requires considerable expertise in programming that cannot
be expected from most people. Thus, one fundamental challenge for the coming
years is to develop environments that allow users who do not have background in
programming to develop or modify their own applications, with the ultimate aim of
empowering people to flexibly employ advanced information and communication
technologies.

Current trends in professional life, education and also in leisure time are
characterized by increasing change and diversity: changing work and business
practices, individual qualifications and preferences, or changes in the dynamic
environments in which organizations and individuals act. The diversity concerns
people with different skills, knowledge, cultural background and cognitive or
physiological abilities, as well as diversity related to different tasks, contexts and
areas of work. Enhancing user participation in the initial design of systems is part of
the solution. However, given that user requirements are diversified, changing, and at
times hard to identify precisely, going through conventional development cycles
with software-professionals to keep up with evolving contexts would be too slow,
time-consuming and expensive. Thus, flexibility really means that the users
themselves should be able to continuously adapt the systems to their needs. End-
users are generally neither skilled nor interested in adapting their systems at the
same level as software professionals. However, it is very desirable to empower users
to adapt systems at a level of complexity that is appropriate to their individual skills
and situations. This is the main goal of EUD: empowering end-users to develop and
adapt systems themselves. Some existing research partially addresses this issue,
advocating casting users as the initiators of a fast, inexpensive and tight co-evolution
with the systems they are using (Wulf 1999; Arondi et al. 2002; Mørch 2002 ; see
also the "Agile Programming" techniques of Beck 1999 and Cockburn 2002))

2 HENRY LIEBERMAN, FABIO PATERNÓ, MARKUS KLANN, AND VOLKER WULF

This insight, which developed in various fields of Software Engineering and

Human-Computer Interaction (HCI), has now become focused in the new research
topic of End User Development (EUD). To enable systems for EUD, they must be
made considerably more flexible and they must support the demanding task of EUD:
they must be easy to understand, to learn, to use, and to teach. Also, users should
find it easy to test and assess their EUD activities.

Though there are diverse views on what constitutes EUD, we attempt below to

give a working definition of it:

End-User Development can be defined as a set of methods, techniques, and tools

that allow users of software systems, who are acting as non-professional software
developers, at some point to create, modify or extend a software artefact.

Today, some forms of EUD have found widespread use in commercial software

with some success: recording macros in word processors, setting up spreadsheets for
calculations and defining e-mail-filters. While these applications only realize a
fraction of EUD's potential and still suffer from many flaws, they illustrate why
empowering end-users to develop the systems they are using is an important
contribution to letting them become active citizens of the Information Society.

(Boehm et al. 2000) predicts exponential growth of the number of end-user
developers compared to the number of software professionals, underscoring the
importance of research in EUD. The potential to provide EUD services over the
Internet may create a shift from the conventional few-to-many distribution model of
software to a many-to-many distrubtion model. EUD could lead to a considerable
competitive advantage in adapting to dynamically changing (economic)
environments by empowering end-users – in particular domain experts (Costabile et
al. 2003) – to perform EUD. The increasing amount of software embedded within
consumer and professional products also points to a need to promote EUD to enable
effective use of these products.

On the political level EUD is important for full participation of citizens in the
emerging Information Society. The Information Society is characterized by
computer networks, which will becoming the leading media, integrating other
traditional media within digital networks and enabling access through a variety of
interaction devices ranging from small mobile phones to large flat screens.
However, the creation of content and the modification of the functionality of this
network infrastructure are difficult for non-professional programmers, resulting for
many sectors of society in a division of labor between those who produce and those
who consume. EUD has the potential to counterbalance these effects.

The emerging research field of End-User Development integrates different
threads of discussion from Human Computer Interaction (HCI), Software
Engineering (SE), Computer Supported Cooperative Work (CSCW), and Artificial
Intelligence (AI). Concepts such as tailorability, configurability, end-user
programming, usability, visual programming, natural programming, and

FEHLER! FORMATVORLAGE NICHT DEFINIERT. 3

programming by example already form a fruitful base, but they need to be better
integrated, and the synergy between them more fully exploited.

We can identify two types of end-user activities from a user-centered design
perspective:
1. Parameterisation or Customisation. Activities that allow users to choose among

alternative behaviours (or presentations or interaction mechanisms) already
available in the application. Adaptive systems are those where the customization
happens automatically by the system in reaction to observation the user's
behavior.

2. Program Creation and Modification. Activities that imply some modification,
aiming at creating from scratch or modifying an existing software artefact.
Examples of these approaches are: Programming by Example (also called
Programming by Demonstration), Visual Programming, Macros, and Scripting
Languages.
EUD more properly involves the second set of activities since with the first set

the modification of software is restricted to strictly predefined options or formats.
However, we often want to design for a “gentle slope” of increasing complexity to
allow users to easily move up from the first to the second set of activities. Examples
of activities belonging to the first type are:

Parameterisation. In this commonly occurring case, the user wishes to guide a
computer program by indicating how to handle several parts of the data in a different
way; the difference may simply lie in associating specific computation parameters to
specific parts of the data, or in applying different program functionalities to the data.

Annotation. The users write comments next to data and results in order to
remember what they did, how they obtained their results, and how they could
reproduce them.

Examples of activities belonging to the second type are:

Programming by Example. Users provide example interactions and the system

infers a routine from them (Lieberman 2001).

Incremental programming. This is close to traditional programming, but limited
to changing a small part of a program, such as a method in a class. It is easier than
programming from scratch.

Model-based development. The user just provides a conceptual description of
the intended activity to be supported and the system generates the corresponding
interactive application (Paternò, 2001).

Extended annotation or parameterisation. A new functionality is associated with
the annotated data or in a cooperative environment users identify a new functionality
by selecting from a set of modifications other people have carried out and stored in
shared repositories.

4 HENRY LIEBERMAN, FABIO PATERNÓ, MARKUS KLANN, AND VOLKER WULF

To start looking at EUD research, let us distinguish between research on end-

user participation during the initial design phase and research on end-user
modification during usage. As EUD implies that design can extend beyond an
initial, dedicated design phase, this is not really a sharp distinction.

Providing support during a dedicated design phase aims at better capturing and
satisfying user requirements. Research in this area seeks to develop domain-specific,
possibly graphical modeling languages that enable users to easily express the desired
functionality (cf. Paternò et al. 1994; Mehandjiev and Bottaci 1996; Repenning et al.
2000). Such modelling languages are considered an important means of bridging the
‘communication gap’ between the technical view of software professionals and the
domain expert view of end-users (Majhew 1992; Paternò 2001). In particular, work
is being done on using the extension mechanisms of the Unified Modelling
Language (UML), a set of graphical representations for modelling all aspects of
software systems, to create a representational format for end-users. Another
complementary approach to bringing these two views closer together is the use of
scenarios in development as a communicative aid.

As noted above, an initial design tends to become outdated or insufficient fairly
quickly because of changing requirements. Challenging the conventional view of
‘design-before-use’, new approaches try to establish ‘design-during-use’
(Mehandjiev and Bottaci 1996; Dittrich et al. 2002), leading to a process that can be
termed ‘evolutionary application development’. System changes during use might be
brought about by either explicit end-user requests or automatically initiated state
transitions of the system. In the first case, the system is called adaptable, whereas in
the second, adaptive (Oppermann and Simm 1994).

Such a scenario raises the need for system flexibility that allows for
modifications that go well beyond simple parameterisations, while being
substantially easier than (re)programming. More precisely, a system should offer a
range of different modification levels with increasing complexity and power of
expression. This is to ensure that users can make small changes simply, while more
complicated ones will only involve a proportional increase in complexity. This
property of avoiding big jumps in complexity to attain a reasonable trade-off is what
is called the ‘gentle slope’ (McLean et al. 1990; Dertouzos 1997; Wulf and
Golombek 2001). As an example, a system might offer three levels of complexity:
First, the user can set parameters and make selections. Second, the user might
compose existing components. Third, the user can extend the system by
programming new components (Henderson and Kyng 1991; Mørch 1997;
Stiemerling 2000). Modular approaches can generally provide a gentle slope for a
range of complexity by allowing successive decomposition and reconfiguration of
software entities that are themselves build up from smaller components (e.g. Won et
al. in this volume). The precondition for this is that a system’s component structure
has been designed to be meaningful for its users, and that these users are able to
easily translate changes in the application domain into corresponding changes in the
component structure.

FEHLER! FORMATVORLAGE NICHT DEFINIERT. 5

While adaptivity alone does not constitute end-user development because the
initiative of modifications is with the system, it is interesting to combine it with end-
user driven activities. Users may want to stay in control of how systems adapt
themselves and might have to supply additional information or take certain decisions
to support system adaptivity. Conversely, the system might try to preselect the
pertinent EUD options for a given context or choose an appropriate level of EUD for
the current user and task at hand, thus enhancing EUD through adaptivity. Mixed
forms of interactions where adaptive systems can support interaction but users can
still take the initiative in the development process may provide interesting results, as
well.

How do we make functionality for adaptation available at the user interface?
First, adaptation should be unobtrusive, so as not to distract user attention from the
primary task. At the same time, the cognitive load of switching from using to
adapting should be as low as possible. There seems to be a consensus that adaptation
should be made available as an extension to the existing user interface. A related
issue is how to make users aware of existing EUD functions and how to make these
functions easily accessible (e.g. Wulf and Golombek 2001).

Another key research area deals with cooperative EUD activities, having its roots
in research on computer-supported cooperative work (CSCW). It investigates topics
such as collaborative development by groups of end-users (Mørch and Mehandjiev
2000; Letondal 2001), privacy issues, and repositories for sharing artefacts among
end users (Wulf 1999; Kahler 2001). This research also includes recommending and
awareness mechanisms for finding suitable EUD expertise as well as reusable
artefacts. We should foster the building of communities where end-users can
effectively share their EUD-related knowledge and artefacts with their peers
(Costabile et al. 2002; Pipek and Kahler in this volume).

Flexible software architectures are a prerequisite for enabling adaptivity.
Approaches range from simple parameters, rules and constraints to changeable
descriptions of system behaviour (meta-data) and component-based architectures
(Won et al. in this volume). A key property of an EUD-friendly architecture is to
allow for substantive changes during run-time, without having to stop and restart or
rebuild the system.

Enabling end-users to substantially alter systems creates a number of obvious
issues concerning correctness and consistency, security and privacy. One approach
to handling these issues is to let the system monitor and maintain a set of desired
system properties during EUD activities. For example, properties like integrity and
consistency can be maintained by only allowing safe operations. Nonetheless, user
errors and incompleteness of information cannot be ruled out altogether (Lieberman
2001). Users may often be able to supply missing information or correct errors if
properly notified. For this reason, it may be best to adopt a mixed-initiative
approach to dealing with errors (Horvitz, 1999).

Finally, another approach to improving EUD is to create languages that are more
suited to non-programmers and to specifying requirements than are conventional
programming languages. In particular, domain-specific and graphical languages are
being investigated (e.g. Paternò et al. 1994).

6 HENRY LIEBERMAN, FABIO PATERNÓ, MARKUS KLANN, AND VOLKER WULF

At the centre of EUD are the users and their requirements (Stiemerling et al
1997). The increasing change and diversity engendered by networked mobile and
embedded devices will enable access to interactive services anywhere and anytime
in diverse contexts of use. Therefore, EUD environments should support easy
generation of interfaces able to adapt the device's features (e.g. Berti et al., in this
volume). Also, systems are used by diverse groups of people, with varying levels of
expertise, current tasks and other factors. Systems should be able to adapt to the
changing contexts and requirements under the user's control and understanding.

EUD is a socio-cultural activity, depending on place, time and people involved.
Differences in EUD practice are likely to develop for different cultures and
languages. Obviously, this is of particular importance for cross-cultural
collaboration. Another area where such differences are likely to show up is EUD of
groupware systems, whether this EUD is done cooperatively or not. These
differences may relate to who is in control of EUD activities, to the relation between
individual and collaborative EUD, and to how communities of end-user developers
are organized.

Embedding systems into heterogeneous environments cannot be completely
achieved before use, by determining the requirements once and deriving an
appropriate design. Rather, adaptation must continue as an iterative process by the
hands of the users, blurring the border between use and design. A given system
design embodies a certain semiotic model (Lehman 1980) of the context of use, and
that EUD allows users to adapt this model to reflect their natural evolution.
Furthermore, using a system changes the users themselves, and as they change they
will use the system in new ways (Carroll and Rosson 1992; Pipek and Wulf 1999).
Systems must be designed so that they can accommodate user needs that cannot be
anticipated in the requirement phase, especially those that arise because of user
evolution (Costabile et al. 2003).

Being a relatively young field, EUD is yet rather diversified in terms of
terminology, approaches and subject areas. Networking within the EUD-community
has started only relatively recently (Sutcliffe and Mehandjiev 2004). One such effort
was the EU-funded Network of Excellence EUD-Net1, bringing together leading
EUD researchers and industry players from Europe. Later on, the US National
Science Foundation funded EUSES (End-User Software Engineering Systems),
investigating whether it is possible to bring the benefits of rigorous software
engineering methodologies to end-users. It is generally felt that there is a strong
need for thorough empirical investigations of new EUD-approaches in real-world
projects, both to solidify the theoretical groundings of EUD, and to develop more
appropriate methods and tools for deploying and using EUD-systems. Further
research initiatives are on the way in the 6th Framework Program of the EU as well
as by single European states such as Germany.

The present book is an effort to make many important aspects of the international
EUD discussion available to a broader audience. A first set of papers resulted from
two EUD-Net events: a research workshop held in September 2002 at ISTI-CNR in
Pisa, Italy, and the International Symposium on End-User Development held in

1 For more information on EUD-Net see http://giove.isti.cnr.it/eud-net.htm.

FEHLER! FORMATVORLAGE NICHT DEFINIERT. 7

October 2003 in Schloss Birlinghoven, Germany. Beyond these contributions, we
invited some papers from other leading researchers in the field. We hope that this
broad look at the emerging paradigm of End-User Development leads you to
appreciate its diversity and potential for the future. And we look forward to having
you, the reader, the "end-user" of this book, contribute what you can to the field,
whether it is working on a system for EUD, or simply achieving a better
understanding of how EUD might fit into your work and your life.

1. REFERENCES

Arondi, S., P. Baroni, et al. (2002). Supporting co-evolution of users and systems by the recognition of
Interaction Patterns. AVI 2002, Trento, Italy.

Beck, B.: Extreme Programming Explained: Embrace Change, Addison-Wesley 1999
Boehm, B. W., C. Abts, et al. (2000). Software Cost Estimation with COCOMO II. Upper Saddle River,

NJ, Prentice Hall PTR.
Carroll, J. M., Rosson M. B. (1992) Getting Around the Task-Artifact Cycle: How to Make Claims and

Design by Scenario. ACM Trans. Inf. Syst.n10(2): 181-212
Cockburn, A. (2002). Agile Software Development, Addison Wesley.
Costabile, M. F., D. Fogli, et al. (2002). Computer Environments for Improving End-User Accessibility.

ERCIM Workshop "User Interfaces For All", Paris.
Costabile, M. F., D. Fogli, et al. (2003). Building Environments for End-User Development and

Tailoring. IEEE Symposia on Human Centric Computing Languages and Environmnets, Aukland.
Dittrich, Y., S. Eriksén, et al. (2002). PD in the Wild: Evolving Practices of Design in Use. PDC 2002,

Malmö, Sweden.
Dertouzos, M. (1997), What Will Be: How the New World of Information Will Change Our Lives.

Harper-Collins, New York, 1997.
Henderson, A. and King M. (1991). There's No Place Like Home. Continuing Design in Use. Design at

Work, Lawrence Erlbaum Assoc.: 219-240.
Horvitz, E. (1999) Principles of Mixed-Initiative User Interfaces. Proceedings ACM CHI 1999, pp.159-

166, ACM Press.
Kahler, H.: Supporting Collaborative Tailoring, Ph.D.-Thesis, Roskilde University, Denmark, Roskilde,

2001
Lehman, M. (1980). Programs, Life Cycles, and Laws of Software Evolution. IEEE 68.
Letondal, C. (2001). Programmation et interaction. Orsay, Université de Paris XI.
Liebermann, H. (2001). Your Wish is My Command: Programming by Example. San Francisco, Morgan

Kaufmann.
MacLean, A.; Carter, K.; Lövstrand, L.; Moran, T: User-tailorable Systems: Pressing the Issue with

Buttons, in: Proceedings of the Conference on Computer Human Interaction (CHI '90), April 1-5,
1990, Seattle, Washington, ACM-Press, New York 1990, pp. 175 –182

Majhew, D. J. (1992). Principles and Guideline in Software User Interface Design., Prentice Hall.
Mehandjiev, N. and L. Bottaci (1996). User-enhanceability for organizational information systems

through visual programming. Advanced Information Systems Engineering: 8th International
Conference, CAiSE'96, Springer-Verlag.

Mørch, A. I. (1997). Three Levels of End-User Tailoring: Customization, Integration, and Extension.
Computers and Design in Context. M. Kyng and L. Mathiassen. Cambridge, MA, The MIT Press:
51-76.

Mørch, A. I. (2002). Evolutionary Growth and Control in User Tailorable Systems. Adaptive
Evolutionary Information Systems. N. Patel, Idea Group Publishing: 30-58.

Mørch, A. I. and N. D. Mehandjiev (2000). "Tailoring as Collaboration: The Mediating Role of Multiple
Representations and Application Units." Computer Supported Cooperative Work. 9(1): 75-100.

Oppermann, R. and H. Simm (1994). Adaptability: User-Initiated Individualization. Adaptive User
Support - Ergonomic Design of Manually and Automatically Adaptable Software. R. Oppermann.
Hillsdale, New Jersey, Lawrence Erlbaum Ass.

Paternò, F. (2001). Model-based Design and Evaluation of Interactive Applications, Springer Verlag.

8 HENRY LIEBERMAN, FABIO PATERNÓ, MARKUS KLANN, AND VOLKER WULF

Paternò, F., I. Campari, et al. (1994). "The Design and Specification of a Visual Language: an Example
for Customising Geographic Information Systems Functionalities." Computer Graphics Forum 13(4):
199-210.

Pipek, V. and V. Wulf (1999). A Groupware’s Life. Proceedings of the Sixth European Conference on
Computer Supported Cooperative Work (ECSCW ’99). Dordrecht, Kluwer: 199-219.

Repenning, A., A. Ioannidou, et al. (2000). "AgentSheets: End-User Programmable Simulations." Journal
of Artificial Societies and Social Simulation 3(3).

Stiemerling, O.: Component-based Tailorability, Ph.D. Thesis, Department of Computer Science,
University of Bonn, Bonn, 2000.

Stiemerling, O., Kahler, H.; Wulf, V.: How to Make Software Softer - Designing Tailorable Applications,
in: Proceedings of the ACM Symposium on Designing Interactive Systems (DIS 97), 18. - 20.8.1997,
Amsterdam (NL), ACM-Press, New York 1997, pp. 365 – 376

Sutcliffe, A., Mehandjiev N.. (2004). End User Development, Special Issue of the Communications of the
ACM, September 2004, Vol.47, No.9.

Wulf, V.: “Let's see your Search-Tool!” - Collaborative use of Tailored Artifacts in Groupware, in:
Proceedings of GROUP '99, ACM-Press, New York, 1999, pp. 50-60

Wulf, V. and B. Golombek (2001). "Direct Activation: A Concept to Encourage Tailoring Activities."
Behaviour & Information Technology 20(4): 249 - 263.

