
C. Stary and C. Stephanidis (Eds.): UI4All 2004, LNCS 3196, pp. 242–253, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Supporting Web Usability for Vision Impaired Users

Francesco Correani, Barbara Leporini, and Fabio Paternò

ISTI - C.N.R.
56124 - Pisa, Italy

{francesco.correani,barbara.leporini,fabio.paterno}@isti.cnr.it

Abstract. The aim of this work is to provide designers and developers of Web
applications with support to obtain systems that are usable for vision-impaired
users. To this end, we have defined a number of design criteria to improve Web
site navigation through screen readers or other similar devices. A test of naviga-
tion by blind and vision-impaired subjects showed that our criteria improved
Web site usability both qualitatively and quantitatively. Subsequently, an in-
spection-based tool was developed to ease application of such criteria. Its main
features are presented along with a discussion of some of the first application
results.

1 Introduction

In recent years there has been increasing interest in accessibility and usability issues,
since it is more and more important that the information on the Internet be easily
reached by all categories of users. However, these issues are often addressed by two
separate communities with two different focuses, one on usability and the other on
accessibility. Indeed, the W3C consortium has developed guidelines only for accessi-
bility, whereas in the human-computer interaction area many methods aim to evaluate
only usability aspects. Vision-impaired users need to have both accessible and usable
applications. Recently, designers and developers are becoming aware that there is a
need for integrating these two aspects in order to obtain Web sites for a wide variety
of users, including those with disabilities. Indeed, if such integration is lacking then it
is possible to obtain usable sites with low accessibility (sites easy to use but not ac-
cessible for users with disabilities) or vice versa accessible sites but with low usability
(where even users with disabilities can perform their tasks but with difficulty or at
least not easily as it could be).

When only accessibility guidelines are applied a number of navigational problems
can be found when using a screen reader or magnifier:

• Lack of context – reading through the screen reader or a magnifier the user may
lose the overall context of the current page and read only small portions of texts.
For example, when skipping from link to link with the tab key, a blind user reads
the link text on the braille display or hears it from the synthesizer (e.g. “.pdf”,
“more details”, etc.), but not what is written before and after.

• Information overloading – The static portions of the page (links, frames with ban-
ners, etc.) may overload the reading through a screen reader, because the user has
to read every thing almost every time, thus slowing down the navigation.

Supporting Web Usability for Vision Impaired Users 243

• Excessive sequencing in reading the information – the command for navigating
and reading can constrain the user to follow the page content sequentially. Thus, it
is important to introduce mechanisms to ease the identification of precise parts in
the page. An example of this is the result page generated by a search engine. Usu-
ally, in the top of such pages, there are several links, advertisements, the search
fields and buttons, and so on, and then the search results begin.

To overcome these problems, we have developed a number of criteria [5] aiming at
identifying the meaning of usability when Web sites are accessed by users with dis-
abilities through screen readers. In this paper we present a tool that provides support
for designers and developers interested in applying such criteria.

In the following sections, after discussing related work we present the proposed
criteria, then we introduce the tool developed to support designers and developers
interested in applying such criteria. Lastly, some concluding remarks are drawn along
with indications for future work.

2 Background

2.1 Related Work

Well-defined criteria and guidelines must be provided to guide designers in the devel-
opment process of more usable and accessible Web sites. Up to now, usability and
accessibility guidelines have usually been proposed separately, whereas we propose
an integrated approach. Many detailed usability guidelines have been formulated for
both general user interfaces and Web page design. Most accessibility issues are taken
into account especially by W3C (World Wide Web Consortium) in the Web Accessi-
bility Initiative (WAI), in which a set of specific guidelines and recommendations has
been defined: "Web Content Accessibility Guidelines 1.0" (WCAG 1.0) [15]. Cur-
rently, a new version 2.0 of Web Content Accessibility Guidelines as a Recommenda-
tion is in progress [16]. A number of tools (for example, BOBBY [3], LIFT [13], and
WebSat [8]) have been proposed to identify accessibility problems mostly following
the guidelines of Section 508 and W3C. LIFT and WebSat also support usability
criteria for users without disabilities but do not support specific usability criteria for
users accessing through screen readers.

There are various international projects involving accessibility and usability of user
interfaces for people with special needs [7]. Stephanidis' group has long been working
on user interfaces for all, elaborating methods and tools allowing the development of
unified user interfaces [10]. In the AVANTI project, a "Unified Web Browser" has
been developed: it employs adaptability and adaptivity techniques, in order to provide
accessibility and high-quality interaction to users with different abilities and needs
(e.g., blind users or those with other disabilities). In particular, for vision-impaired
people, it incorporates techniques for the generation of a list of large push buttons
containing the links of a page. However, apart from this feature, which is similar to
some checkpoints of the criteria proposed in our work, the AVANTI browser focuses
on accessibility issues, but does not specifically address navigation usability through
screen readers. The analysis of Web site accessibility and usability by means of
guidelines, similarly to other inspection methods used in usability/accessibility as-
sessment, requires observing, analysing and interpreting the Web site characteristics

244 Francesco Correani, Barbara Leporini, and Fabio Paternò

themselves. Since those activities involve high costs in terms of time and effort, there
is a great interest in developing tools that automate the process of registration, analy-
sis and interpretation of these accessibility data. Ivory & Hearts [4] distinguish be-
tween automatic capture, analysis and critique tools. Automatic capture tools assist
the process of collecting relevant user and system information. Examples of such
tools are Web server logging tools and client-side logging tools (e.g. WebRemUsine
[9]), and so on.

Many automatic evaluation tools were developed to assist evaluators with guide-
lines review by automatically detecting and reporting violations and in some cases
making suggestions for fixing them. EvalIris [1] is an example of tool that allows
designers and evaluators to easily incorporate new additional accessibility guidelines.
The tool proposed herein aims at working on the basis of the checkpoints associated
with the criteria, in order to evaluate and repair Web sites through an interactive proc-
ess with the evaluator/developer.

Regarding usability of Web site navigation from the perspective of users with dis-
abilities, Barnicle [2] reports on some first usability testing of GUI applications for
blind and vision-impaired users interacting through screen readers. However, despite
progress in screen reader development, blind users of GUI applications still face many
obstacles when using these applications. In [12] a study about usability of Web site
navigation through screen readers is discussed. In particular, this work addresses
accessibility supported in the 508 standard [11]. Indeed, through a user testing con-
ducted with 16 blind users, they showed the lack of support of usability criteria ac-
cording to the 508 standard guidelines. From the empirical evaluation, they suggested
32 guidelines aimed at improving usability for blind users. Some of those guidelines
are furnished for Web site developers and others for screen reader developers. As a
result, an unstructured and unorganised list of guidelines was proposed. Such list
appears difficult to use as reference by developers because of the lack of a clear struc-
ture and organization of the guidelines. In contrast to their approach, we have sought
to formulate general principles according to the three main properties of usability of
its standard definition. In addition, we have classified the criteria on the basis of their
impact on the Web user interface. Furthermore, although further investigations are in
progress, at the moment the guidelines proposed in [12] refer only to blind users and
do not consider low vision users. Besides, some important aspects for blind users are
not considered, such as “messages and dynamic data management”, “sound usage”,
“appropriate names for frames or tables”, etc. Considering how their guidelines are
expressed, it is likely to be difficult to perform automatic evaluation of them. More-
over, no indication is given about the development of a tool for their automatic sup-
port.

2.2 The Proposed Criteria

The usability of a Web site depends on many aspects. In order to improve the naviga-
bility through a screen reader, we propose 19 criteria [5] that we have divided into
three subsets according to different aspects of usability indicated by the standard
usability definition (ISO 9241): "effectiveness" criteria (5) ensure the accomplishment
of the task, for example using a logical partition of interface elements or ensuring a
proper link content, "efficiency" criteria (10) shorten the time required to complete
that task, for example using proper names for frames, tables and images or providing

Supporting Web Usability for Vision Impaired Users 245

importance levels for the elements or identifying the main page content; "satisfaction"
criteria (4) provide Web pages with minor additional characteristics (addressed to
improve the navigation) without the need to use specific commands.

The other parameter that we have used to classify the criteria is the user interface
aspect involved: presentation criteria are indicated by an “a” and those related to the
user interface dialogue by a “b”. Table 1 shows the list of the proposed 19 criteria. To
identify each criterion we used the format I.J.L where: I denotes the usability aspect
addressed, that is 1 for effectiveness, 2 for efficiency, or 3 for satisfaction; J is a pro-
gressive index number to enumerate the criteria (j=1..Ni=5|10|4); L can be a (presenta-
tion) or b (dialogue) to indicate the aspect type on which the criterion has an effect.

Table 1. List of the proposed criteria.

Effectiveness 1.1.b Logical partition of interface elements
1.2.a Proper link content
1.3.b Messages and dynamic data management
1.4.a Proper style sheets
1.5.b Layout and Terminological Consistency

Efficiency 2.1.b Number of links and frames
2.2.b Proper name for frames, tables and images
2.3.a Location of the navigation bar
2.4.b Importance levels of elements
2.5.b Keyboard shortcuts
2.6.a Proper form use
2.7.b Specific sections
2.8.b Indexing of contents
2.9.b Navigation links
2.10.b Identifying the main page content

Satisfaction 3.1.b Addition of short sounds
3.2.a Colour of text and background
3.3.a Magnifying at passing by mouse
3.4.a Page information

The 19 formulated criteria address usability issues of Web interfaces when a screen
reader is used. The criteria intend to be general principles that should be considered
by Web designers/developers during the development phases of a Web site. Such
principles are aimed at structuring user interface elements and content of the page, as
well as providing additional features, which can help users to move about better in the
Web site through a screen reader. Some possible examples of criteria application are:
appropriately marking the navigation bar and side-menu; logically spreading out the
content in the page; using meaningful names and labels for textual/graphical links and
buttons; keeping consistency among pages. Many criteria affect visually the Web
interface (e.g. coloured areas or element magnifications), whereas others are detected
only by the screen reader (e.g. hidden labels or names of frames).

To facilitate their application by Web site developers, we have suggested 54 tech-
nical checkpoints. A checkpoint is a specific construct in a language for Web page
development that, when provided, it supports the application of a given criterion. For
each criterion, we provide a number of different technical solutions to support it,
taking into account developers' choices in building the Web site (e.g., frames,

246 Francesco Correani, Barbara Leporini, and Fabio Paternò

JavaScripts, etc.). Thus, usability aspects are addressed in terms of associated criteria,
while the technical solutions in terms of checkpoints. For instance, the criterion
"proper form usage" has four checkpoints related to: (1) button labels, (2) groups of
control elements, (3) Onchange event (to be avoided), (4) matching labels and input
elements; whereas, the criterion "Loading suitable style sheets" has three checkpoints
referring to different devices: (1) voice synthesizer, (2) display and (3) printer Braille
device.

In spite of the effort of providing an objective classification of the criteria, the in-
clusion of some of them in one group rather than in another may be somewhat open to
personal interpretation although this is rarely significant.

2.3 Empirical Testing of the Criteria

In order to estimate the impact of our proposed criteria on the user interface for visu-
ally-impaired users, a user testing was conducted [6]. Usability testing provides an
evaluator with direct information regarding the way people use applications and the
problems they encounter when they use the tested interface. In our case, the test was
conducted with two groups of users: twenty blind and visual impaired people were
recruited for the testing. All the participants had been using Windows 98/ME and
Jaws (as screen reading application) for at least one year at the moment of the testing.
Thus, it could safely be assumed that they were adept at using the combination of a
screen reader and Windows with the Internet Explorer browser.

Half of the participants were blind and the other half had a partial vision deficit: in
any case, no-one could spot elements on the screen without an auxiliary support. The
experience with the screen reader was extremely different within the group of partici-
pants, their level ranging from beginner to expert. The testing procedure adopted was
based on two remote evaluation techniques (remote logging complemented with a
remote questionnaire) and was performed by using two Web site prototypes and two
tests, each one composed of 7 assigned tasks. The remote evaluation was used for
capturing objective data: participants used the system to complete a pre-determined
set of tasks while the system recorded (via log files) the results of participants' inter-
action (i.e. time spent), whereas through the questionnaire subjective information on
navigation quality were collected from users (e.g. opinions about sound usage, colour
contrast, shortcut preference, tasks more difficult, and other personal considerations),
and other qualitative data not obtainable by the logging tool were collected.

For our testing, we considered a Web site containing specific information about the
“The Tuscan Association for the Blind” (Unione Italiana Ciechi – Regione Toscana).
This testing site was chosen with the intent of putting blind people in a comfortable
situation by providing them with familiar information, thus reducing navigation diffi-
culties.

Two versions of the same Web site prototype were considered: a "control version"
implemented without applying our criteria (used as control in our testing protocol)
and an "implemented version" created according to our 19 criteria. Practically, in the
“implemented version” we applied all the proposed criteria analysing how to apply
one checkpoint instead of another (e.g. heading levels rather than frames for logical
partition). However, we tried to cover most checkpoints by applying various solutions
for different pages (remember that one criterion can be applied through several
checkpoints). Half of the participants were asked to start from the “control version”
and the other half from the “implemented version”. The testing procedure was con-

Supporting Web Usability for Vision Impaired Users 247

ducted through two sessions driven automatically: “test0” (control version) and
“test1” (implemented version). A Wizard was implemented with the purpose of indi-
cating the assigned sequence of tasks to perform (necessary for the subsequent
evaluation) to the users without constraining participants’ behaviour. Each participant
was asked to carry out a set of seven tasks per test (from easier to more difficult), in
the two Web sites. The time required for performing the tasks was recorded in both
cases. The tasks included common navigation operations, such as page opening, con-
tent reading, and information search. Test0 and test1 included the same types of tasks,
which differed only in some minor aspects (e.g. the file to download, the information
to find, etc.).

During both testing procedures, the main interaction activities performed by each
user were captured and logged. The log files contained a wide variety of user actions
(such as mouse clicks, text typing, link selections…) as well as browsing behaviour,
such as page loading start and end. In particular, the tool logged the time when each
specific interaction was performed. Consequently, it was possible to compute the time
spent for carrying out each task as the difference between the times corresponding to
the beginning and the end of the task. Thus, all data gathered through the testing pro-
cedure were analysed in order to evaluate the overall improvement of the Web site
after the application of our criteria. Such improvement was measured in terms of
navigation time saved by users in accomplishing given tasks.

At the end of the testing procedures, two log files per users were available. Each
log file contained a set of couple <event type / performing time>, which allowed to
compute the time spent per task. The difference between the time spent performing
each task in test0 and test1 (“control site” and “implemented site” respectively) was
used to verify if and to what extent the application of our criteria had improved navi-
gability. So, the time saved by users was taken as an indicator of Web site improve-
ment.

In order to assess the statistical significance of the data analysed, non-parametric
statistic tests were applied to raw data: α was fixed at 0.05 (significance) and 0.01
(high significance). We found a significant difference between the total time spent by
all users performing each task in test0 and test1 (Wilcoxon matched pairs test). For
each task, the total time was calculated by summing the time spent by each user
(twenty users). We also found a highly significant difference between the total time
spent by each user performing all the given tasks in test0 and test1 (Wilcoxon
matched pairs test). For each user, the total time required in test0 and test1 was com-
puted by summing the time required for each task. The time analysis revealed a wide
range of differences for tasks and users, possibly due to the different ability of us-
ers/difficulty of tasks. However, on average, application of our criteria to the Web site
has led to a significant time saving for all users and tasks.

Among the seven tasks, the task "looking for information in a long page" turned
out to be the most influenced by our criteria. This is likely due the fact that low vision
users could considerably reduce their navigation time by using the side submenus
(e.g. local links or list boxes) to move quickly to a specific section of the page, while
blind users cut navigation time thanks to the list of heading levels generated by the
screen reader commands.

In conclusion, our results showed that both blind and low vision users benefited
from application of our criteria, which saved them around 40% in terms of navigation
time.

248 Francesco Correani, Barbara Leporini, and Fabio Paternò

3 NAUTICUS: A Tool Supporting Usability Criteria

Basing on the encouraging feedback from the testing, we decided to create automatic
support for our criteria, especially addressed to developers who want to make their
Web sites usable for vision-impaired users. Current tools only support accessibility
(e.g. Bobby) or usability evaluation (e.g. WebSAT) but not both of them when users
access through a screen reader.

3.1 The Tool Goals

The NAUTICUS tool (New Accessibility and Usability Tool for Interactive Control
in Universal Sites) has been developed with the intent of checking whether a Web site
is usable for users interacting through screen readers. To this end, the tool checks how
satisfactorily our criteria are applied to the code of Web pages. This is obtained
through automatic identification of the checkpoints associated with each criterion and
analysis of the associated constructs and attributes to check whether they provide the
necessary information.

The tool is not limited to checking whether the criteria are supported but, in case of
failure, it also provides support in modifying the code in order to make the resulting
Web site more usable and accessible. Thus, it points out what parts of the code are
problematic and provides support for corrections indicating what elements have to be
modified or added. The process is not completely automatic because in some cases
the tool requires designers to provide some information that cannot be generated
automatically. Examples of criteria that require the designer’s intervention are:

1.2.a Proper link content, in this case the tools asks the designer to provide mean-
ingful text for the link;

1.4.a Proper style sheets, in this case the tool requires an indication of the file con-
taining the external style sheets:

2.2.b Proper names for frames, tables and images; here the designer may have to
provide the value for the summary attribute for tables or for the alt attribute associated
with images. This can also happen for frame titles and names. In the event the two
values are different, then the tool makes them consistent and provides the designer
with the possibility of modifying the resulting value.

3.2 The Tool User Interface

The main layout of the tool user interface is structured into three main areas:

(1) Criteria, which provides access to the supported criteria;
(2) Report, with the results of the selected page analysis;
(3) Source Code, which shows the source code of the loaded page;

Supported criteria are grouped depending on the main usability aspect to which
they refer and they are visualized using a tabbed pane providing access to the various
groups. The designer can select the application of all or only part of them through
check-boxes.

In the report, blue labels are used to indicate the criteria analysed, while the ele-
ments that do not satisfy the criteria are highlighted in red, and the black parts are

Supporting Web Usability for Vision Impaired Users 249

considered to satisfy the criteria. In the case of Figure 1, the criterion regarding proper
name for frames, tables and images has been selected and the report with the corre-
sponding list of issues is displayed.

Fig. 2. Tool output related to a criteria-based evaluation.

Fig. 1. Tool-support identification and repair of problematic parts through the DOM.

250 Francesco Correani, Barbara Leporini, and Fabio Paternò

For each issue, the number of occurrences is indicated as well. The code can be
corrected either through the DOM (Document Object Model) [14] or by editing the
page. The Document Object Model is a platform- and language-neutral interface that
allows programs and scripts to dynamically access and update the content, structure
and style of Web documents. The document can be further processed and the results
of that processing can be incorporated back into the presented page. Our tool supports
direct access to the DOM: the designer has to select a criterion and then activate the
analysis and ask for correction. At this point, the tool shows the corresponding inter-
face (see an example in Figure 2). In the left part there is a tree representing the DOM
elements of the current page, where it is possible to distinguish the elements from the
attributes and texts.

The right part displays useful information to identify and repair the problematic
parts of the tags currently under analysis. It shows the error type, the affected element
and its associated attributes and values.

Through the “Correct Next Error” button it is possible to access the next tag that
raises an error according to the current criterion. The left part displays the hierarchical
structure of the DOM with the possibility of folding/unfolding elements. In addition,
through the controls, it is possible to scroll and modify the attributes of the selected
element or create new ones. The modifications made can be saved in order to imme-
diately apply them to the DOM. It is also possible to automatically search for the next
error. In Figure 2 we can see how the tool immediately identifies the first element that
does not satisfy the selected criterion (proper use of frames, tables and images). In the
example it is a table. Then, the designer can edit it, for example by adding a summary
attribute.

In order to perform an evaluation about the names of frames, appropriate links,
adequate summaries for tables and so on, a complete objective evaluation can not be
done. So, for this purpose we defined a set of dictionary files in which a list of “wrong
terms” or “appropriate potential terms” are stored. For example, terms such as “click
here”, “here”, “pdf”, “more information”, and so on, are stored as inappropriate text
for links; or names such as “left”, “central”, “sx”, etc., are listed as frame names to be
avoided.

All these files can be updated and modified, so that evaluators can customize them.
In addition, the use of such dictionaries allows designers to change languages. There-
fore, changing a language implies changing the dictionary used for evaluating / repair-
ing.

3.3 The Tool Architecture

The tool has been implemented in Java. It first checks through the Tidy library
whether the page is well-formed and then corrects any syntactical errors. Then, for
each evaluation criterion there is a class implementing the associated algorithm to
check its application. It mainly analyses the DOM to see whether the associated con-
structs are provided along with the necessary attributes.

The architecture is structured in a number of modules implemented through the
Java packages:

• Effectiveness: this package contains all the classes implementing the effectiveness
criteria;

Supporting Web Usability for Vision Impaired Users 251

• Efficiency: this package contains all the classes implementing the efficiency crite-
ria;

• Satisfaction: this package contains all the classes implementing the satisfaction
criteria;

• Gui: this package contains all the classes implementing the graphical user inter-
face of the tool;

• Utility: this package contains frequently used classes such as text analyzers,
DOM manipulation, …

• Configuration: this package contains classes that handle the files that are loaded at
the beginning of the application, such as dictionaries and images.

• Exception: this package contains the classes handling the exceptions of Tidy, the
HTML parser.

• Org: this package contains the DOM and Tidy classes.

4 Example of Tool Application

The tool has been applied to the University of Pisa Web site (see Figure 3) and a
number of problems were immediately detected: no style sheets specific for vocal
synthesizers, lack of alt attributes for images used as background and in the layout,
lack of summary attributes to comment the many tables used in the document. There
was no use of tabindex and accessKey, which are very useful for blind users to
quickly go through the Web pages.

Fig. 2. The Web site considered for the tool application.

252 Francesco Correani, Barbara Leporini, and Fabio Paternò

One of the most serious problems was that the access to some university services
can be achieved only through the use of a <select> tag with a Javascript associated
with the OnChange attribute. If the link were accessible through a text or an image,
there would be no problem, but the OnChange attribute creates many difficulties. A
blind user often uses the keyboard for navigation and the TAB key to move from one
element to the next. When they reach the <select> element, since an onChange attrib-
ute has been defined, then the first associated link is automatically selected. In order
to avoid this problem it would have been sufficient to consider the OnClick event
instead of the OnChange, thus the link would have been selected only after an explicit
link selection from the user. This aspect is checked through the criterion 2.6.a (proper
form use).

5 Conclusions

In this paper, we have discussed a set of usability criteria to improve Web navigation
for vision impaired people. Then, we have presented an automatic tool supporting
such criteria and report on its application to a case study.

The tool provides interactive support for checking the application of our criteria
and help designers to improve their Web sites in case it detects problems. We are
extending the tool in order to support evaluation of Web sites obtained through dy-
namic pages.

Future work will be dedicated to further extending the evaluation tool in order to
integrate it with assessment performed through other methods (such as automatic log
analysis) and to support designers even in the development phase.

Acknowledgments

We thank Francesco Conversano for his help in the development of the tool and
Domenico Natale (SOGEI) for useful discussions on the topics of this paper.

References

1. Abascal J., Arrue M., Fajardo I., Garay N., Tomás J., Use of Guidelines to automatically
verify Web accessibility. Universal Access in the Information Society, special Issue on
"Guidelines, standards, methods and processes for software accessibility", Springer Verlag,
Vol.3, N.1, 2004, pp. 71-79.

2. Barnicle, K. Usability Testing with Screen Reading Technology in a Windows Environment.
Proceedings of the 2000 Conference on Universal Usability (CUU-00), pp. 102-109, ACM
Press, November 16-17 2000.

3. Clarck D., Dardailler D. (1999) Accessibility on the Web: Evaluation and repair tools to
make it possible. In proceedings of the CSUN Technology and Persons with disabilities
Conferences, Los Angeles, CA. Available at http://www.cast.org/bobby.

4. Ivory, M. and Hearts, M. (2001) The State of the Art in Automating Usability Evaluation of
User Interfaces. ACM Computing Surveys, Vol, 33, No 4: 470-516.

5. Leporini, B., Paternò, F. (2004). Increasing Usability when Interacting through Screen
Readers, International Journal Universal Access in the Information Society (UAIS), special
Issue on "Guidelines, standards, methods and processes for software accessibility",
Springer Verlag, Vol.3, N.1, pp. 57-70.

Supporting Web Usability for Vision Impaired Users 253

6. Leporini, B., Paternò, F. Testing the effects of web usability criteria for vision impaired us-
ers. ISTI-CNR Technical report, January 2004, Submitted paper.

7. Nicolle, C., Abascal J. Inclusive design guidelines for HCI, p. 285, Taylor & Francis, 2001.
8. Nist Web Metrics: http://zing.ncsl.nist.gov/WebTools/ tech.HTML
9. Paternò, F., Paganelli, L., 2001. Remote evaluation of Web sites based on task models and

browser Monitoring. Proceedings of CHI'01, Extended Abstracts, (Seattle, WA, USA,
April 2001), pp 283-284

10. Stephanidis, C., Paramythis, A., Karagiannidis, C., Savidis, A. Supporting Interface Adap-
tation: the AVANTI Web-Browser. 3rd ERCIM Workshop on "User Interfaces for All",
Strasbourg, France, November 3-4, 1997.

11. Section 508 standards. http://www.section508.gov
12. Theofanos, M.F., Redish, J (2003). Bridging the gap: between accessibility and usability.

ACM Interactions magazine, New York: ACM Press, Nov.-Dec. 2003 issue, pp.36-51
13. USABLE NET (2000) LIFT ON LINE. Available at http://www.usablenet.com/
14. W3C Document Object Model (DOM) http://www.w3.org/DOM/
15. Web Accessibility Guidelines 1.0. Web Accessibility Initiative, W3C Recommendation 5-

May-1999. Accessible at http://www.w3.org/WAI/GL/WCAG10/
16. Web Content Accessibility Guidelines 2.0, W3C Working Draft 1 March 2004available at

http://www.w3.org/WAI/GL/WCAG20/

	1 Introduction
	2 Background
	2.1 Related Work
	2.2 The Proposed Criteria
	2.3 Empirical Testing of the Criteria

	3 NAUTICUS: A Tool Supporting Usability Criteria
	3.1 The Tool Goals
	3.2 The Tool User Interface
	3.3 The Tool Architecture

	4 Example of Tool Application
	5 Conclusions
	References

