

Engineering JavaScript State Persistence of Web
Applications Migrating across Multiple Devices

Federico Bellucci, Giuseppe Ghiani, Fabio Paternò, Carmen Santoro
CNR-ISTI, HIIS Laboratory

Via Moruzzi 1, 56124 Pisa, Italy
{federico.bellucci, giuseppe.ghiani, fabio.paterno, carmen.santoro}@isti.cnr.it

ABSTRACT
Ubiquitous environments call for user interfaces able to
migrate across various types of devices while preserving
task continuity. One fundamental issue in migratory user
interfaces is how to preserve the state while moving from
one device to another. In this paper we present a solution
for the interactive part of Web applications. In particular,
we focus on the most problematic part, which is
maintaining the JavaScript state. We also describe an
example application to illustrate the support provided by
our migration platform.

ACM Classification: H5.2 [Information interfaces and
presentation]: User Interfaces. - Graphical user interfaces.

Keywords: Migratory User Interfaces, Multi-device
Environments, User Interface Adaptation, Continuity.

General Terms: Design, Experimentation, Human Factors.

INTRODUCTION
Recent advances in the capability of digital devices
together with their progressive mass market penetration has
led users to expect to be able to carry out their tasks in any
context and in a seamless way regardless of the possibly
changing settings.

In order to address this kind of challenging scenario, we
propose our approach for migratory interactive
applications, which are applications that are able to
preserve the state reached after some user interactions using
a specific device, and then resume such state within a new
version of the application that has been migrated to the new
device. The proposed architecture for migratory user
interfaces is composed of a number of software modules,
which support the dynamic generation of user interfaces
adapted to various types of target devices and

implementation languages, with the state updated to the one
that was created through the source device.

The range of opportunities that migratory applications open
up can be beneficial in radically different application
domains: for instance, applications whose tasks require
time to be carried out (such as games, business
applications) or applications that have some rigid deadline
and thus need to be completed wherever the user is (e.g.:
online auctions). We focus on Web applications, which
have limited support for state persistence and continuity
across various types of devices. Thus, if for some reason
users have to change device, the information entered can be
lost and then they have to start over their interactive session
on the new device from scratch.

Previous solutions for supporting migration [1] proposed
techniques for the migration of entire applications, but this
does not usually work because of the different interaction
resources of the various devices. Kozuch and
Satyanarayanan [5] proposed a migration solution based on
the encapsulation of the volatile execution state of a virtual
machine, but only limited to migration of applications
among desktop or laptop systems. Chung and Dewan [2]
proposed that, when migration is triggered, the
environment starts a fresh copy of the application process
in the target system, and replays the saved sequence of
input events to the copy. However, this solution can have
performance issues if such a sequence is long. Quan et al.
[7] proposed to collect user parameters into an object called
user interface continuation. Programs can create UI
continuations by specifying what information has to be
collected from the user and supplying a callback (i.e., a
continuation) to be notified with the collected information.
However, differently from them, we support the possibility
of pausing the performance of a task, and then afterwards
being able to resume the performance on a new device from
the point the user left off. A toolkit for Distributed User
Interfaces was proposed in [6], though our solution differs
in that Web applications can be migrated without posing
any constraint on the authoring technique to use for
developing the applications. Other solutions for migratory
interfaces [4] were able to manage only the state of forms
and their adaptation process was not able to manage the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EICS’11, June 13–16, 2011, Pisa, Italy.
Copyright 2011 ACM 978-1-4503-0670-6/11/06...$10.00.

105

associated scripts. In this work, we present a solution able
to preserve the state during a Web migration, including not
only the input entered by the users through the various
interaction techniques available in the Web page, but also
the state referred by JavaScript code (including Ajax
scripts). In particular, the latter point represents the main
contribution of this paper, since it has not been addressed in
previous work on migratory user interfaces.

MIGRATION SOFTWARE ARCHITECTURE
Our solution is mainly a server-based approach. We did not
implement our solution as a browser extension because our
idea was to be as general as possible thus allowing users to
freely choose whatever browser they like. In our solution
we just suppose the existence of the desktop version of the
page to be migrated. Also, we do not consider a migration
occurring between two existing different versions of the
application (e.g. migration from an existing desktop version
to an existing mobile version of the same application).
Rather, we judged more challenging and interesting to
migrate such desktop version by means of dynamically
building a new version suitable for the target device.

The proposed software architecture is illustrated in Figure
1. First, there is a device discovery phase (1), which allows
the various devices available in the environment to discover
each other. This is done through a communication between
the Migration Server and the so-called “Migration Control
Panel”, a Web application (implemented in HTML and
JavaScript) running on each migration device and allowing
the user to manage the various migration features. In order
to support the device discovery phase, the Migration
Control Panel periodically announces itself (via Ajax
requests) to the Migration Server, and then gets the list of
available target devices. After this discovery step, and
supposing a desktop-to-mobile migration, every time the
browser currently running on the desktop requests a page
via the Migration Control Panel (2), this request is captured
by the Migration Proxy of the Migration Platform (3),
which calls up the page concerned from the application
server (4). Before sending the page back to the client
device, the Migration Proxy annotates the page.

Annotations consist in modifying the accessed page in
order to enable its migration. In particular, it includes i)
adapting the links included in the page (to route any
following connection through the Migration Proxy so as to
support migration of pages that are accessible from the
currently visited page), ii) adding IDs to the page
components which can potentially be subject to migration
(e.g. “DIV”, “TABLE”, “FORM”); iii) including
appropriate JavaScript code in the original Web page so as
to support the various migration features (e.g. capture and
transmission of the current state of the page).

The Migration Control Panel also enables the user to
trigger the page migration (5). When a migration trigger
occurs, such a trigger has the effect of “waking up” a script
method previously included in the original Web page in the

annotation phase. Such a script method sends the DOM of
the source page together with the current application state
to the Migration Server (6). The communication between
Migration Control Panel and the Web page is possible
because the Migration Control Panel window keeps a
reference to the Web page window, and thus can access
data and structures of the Web application, which arrive via
the Migration Proxy.

Figure 1. An overview of the migration architecture.

Once the Migration server has obtained the information
about the current context in which the interaction is taking
place (document, application state, focus), it generates the
page for the new device with a state consistent with that of
the original page, and sends its URL to the Migration
Control Panel of the target device (7), which opens it in a
new window (8). The new window shows the target page
with state persistence obtained from the Migration Server
(9).

The process which supports the generation of the page for
the target device starting from the source device page is
actually divided into a number of steps carried out by the
Migration Server. First, by getting the DOM of the current
page (which provides a description of the Web page
considered) and the state of the page (namely: values
contained within forms, currently selected options, etc.),
the Migration Server returns as output a new page which is
the original one enriched with the state information
received in input (therefore, in the new page the form fields
contain the updated values, etc.). Then, such resulting page
undergoes a phase of reverse engineering, which builds the
corresponding logical description from (X)HTML, CSS
and JavaScript implementations. It is worth mentioning that
when the Web application contains Flash or Java applets,
then they are either replaced with alternative content
provided by the application developers or they are passed
“as is” to the target device, if it is able to execute them. The
output of this reverse engineering phase (which is a
concrete UI description for the desktop platform) is then
transformed to a corresponding concrete UI description for
the target platform, by mapping concrete interface elements
on the source device into ones that are more suitable for the

106

interaction resources available in the target device.
Afterwards, the Migration Server analyses such a target
logical description containing all the various presentations
and identifies the currently focused presentation. Finally,
the identified logical presentation is then transformed in
order to build the corresponding implementation for the
target device, which is sent to the target client so that the
user can load the adapted page with the state resulting from
the interactions occurred on the source device and then
continue the interaction with the new version of the page.

The state that we preserve is composed of the values
associated with all the forms elements, the current focus,
the cookies, and the state of the JavaScript code. The last
one has shown to be the most problematic aspect, which
was not supported by previous solutions for migratory user
interfaces and, thus, in this paper we discuss extensively its
solution, whose importance also derives from the
increasing use of JavaScript code.

MANAGING JAVASCRIPT STATE WITHIN MIGRATION
The problem of correctly managing the JavaScript state in
migratory Web applications is a critical point, and since
Web applications are becoming more and more interactive,
it is likely to play an even more important role in the future.
Indeed, if the state associated with JavaScript variables is
not properly saved and restored, inconsistencies can be
experienced when the user migrates to the target device.
This means that exceptions could be raised due to the fact
that some variables no longer exist in the new version
uploaded on the target device, or even worse, no exception
is raised, but some variables might hold incorrect values
(namely, ones that are different from those held when the
migration was triggered).

To capture and restore the JavaScript state of a Web
application we basically use JavaScript code (automatically
included in the concerned Web page by the Migration
platform). Regarding the format for saving the state, we
use the JavaScript Object Notation (JSON), since it is a
lightweight format and in addition the JSON
serialisation/parsing support is natively integrated within
most currently available browsers.

The data types that are supported by the standard JSON
format are: i) primitive types (Number, String, Boolean,
null); ii) arrays (like [value1, value2, ...]); iii) associative
arrays (also known as “Maps”), like {key1: value1, key2:
value2, ...}. However, just using a standard JSON serialiser
is not sufficient, since – as we will see – some problems
are not appropriately handled by using it alone (object
references, non-numeric properties of arrays, timers, …). In
the following sections we describe the main issues we have
addressed regarding the capture and restoration of
migration JavaScript state, and the associated solutions we
adopted. As we will see, such solutions include using a
JavaScript library (dojox.json.ref [3]), which we have
customized in order to properly handle specific issues.
More specifically, we made a number of modifications to

this library in order to serialise the objects that are not
handled by standard JSON (Dates, array properties, DOM
elements) and we manage the serialisation of objects that
do not appear in global variables (e.g. timers), by using a
library-independent mechanism explained in the following
section.

Global and BOM variables
In JavaScript code, every object/variable defined in the
global environment is simply a property of the global
Window object (which in turn represents the browser
window). In order to programmatically capture the values
of the user-defined global variables, we use the JavaScript
for...in statement, which enumerates the properties of
objects (without knowing their names in advance).
However, there are some window properties that, though
enumerated, should not finally be included in the migration
state. These are the properties belonging to the so-called
Browser Object Model (BOM), an interface provided by
the browser, which makes available a number of “utility”
properties (e.g. the address of the page currently loaded in
the browser, the reference to the DOM root, the history
produced by using “Back” and “Forward” browser
buttons). Such properties should be excluded from the
migration state since on the one hand some of them are
browser-dependent, while, on the other, some properties
(like the reference to the DOM root) are already handled by
the migration platform, thus they are useless for migration
purposes. The mechanism we use to exclude the BOM-
related variables is to create a “filter” list for each browser
considered (Internet Explorer, Safari, Opera, Firefox,
Chrome). This support works with any web application.

Object References
This case refers to when the migration platform has to
serialise two variables or properties that refer to the same
value and the value type is non-primitive (then, it is a type
different from Number, Boolean, etc.). For instance:
var x= <anObject> ;
var y = x ;

In this situation, standard JSON would i) serialise twice
<anObject> and ii) serialise it into two separate objects
(one for the x variable and the other one for y). Instead, in
our solution the result of the serialiser is that the y variable
is associated with a unique reference to the x variable. With
this mechanism (called object referencing) we avoid
duplication of value serialisation and preserve, after
migration, the fact that the y variable will continue to refer
to the x variable.

Circular References
A special case of object references is represented by
circular references. We have circular references when there
is a variable, which is defined through another variable,
which in turn is defined through the first one. Let us
consider the following JavaScript excerpt:
var johnJohnson = {

name : "John" ,

107

father : {
 name : "Paul" ,
 son : johnJohnson

}

 };

By using standard JSON, the variable johnJohnson could
not be correctly serialised, since standard JSON serialises
every object through its value and therefore an endless
recursion will result, eventually raising an exception. In our
case, in order to correctly preserve the object state, we
serialise the reference to the object (not the value). This has
been done by exploiting the dojox.json.ref library, which in
correspondence of the value of the “son” property puts a
reference by using a path-based referencing mechanism.
The latter technique supports the identification of an object
property by specifying its location within the object’s
structure. Thus, in this case, in order to identify the “son”
property of the object we provide the path that goes from
the root of the tree (where the tree represents the object), to
the leaf (representing the property involved).

Timers
Timers are generally used when the developer wants to
include some time dependency within the code (e.g.
indicating that a certain portion of the code should be
executed after a specific number of seconds). They are
handled through the methods setTimeout and setInterval
(resp.: to activate a single timer which triggers a handler at
its end; to repeat a portion of code after a specific time
interval); and through the clearTimeout and clearInterval
methods (resp.: to stop a currently active timer, which is
identified by an ID; and to clear a timer set with the
setInterval method). In the following example handler is
the code excerpt to run after ms milliseconds have elapsed;
timerId is the identifier associated with the timer:

var timerId = setTimeout (handler , ms);
clearTimeout (timerId);

Timers can affect the state in two possible manners: first,
we can have timers that are currently active/pending at the
time when the migration occurs; secondly, in the code we
might have variables containing references to timers.
Unfortunately, the ECMAScript APIs neither offer methods
enabling to access the state of an active JavaScript Timer,
nor do they allow enumerating the list of active Timers.
In order to cope with this issue and allow the correct
restoring of timers after migration, in our solution we
override the standard behaviour of setTimeout by adding
additional code able to appropriately handle the state of
timers. More specifically, the solution we adopted creates a
global/public list of Timers, by adding a Timer object to
such a list every time the setTimeout (or setInterval) is
invoked. Since such a list is global, it will be easily
accessed in the global state. The timers of such a list will be
updated by a single “central” timer which will invoke at
regular intervals the update function of each active timer. In
order to correctly restore timers after migration, in the
target device we build a list of timers starting from the

global/public list of timers saved in the state and then, by
re-starting the central timer, all the connected timers will
also be re-started. In this way, the active timers will be
consequently restored in the target device.

Dates
The Date object is used to work with dates and times.
Standard JSON does not support the serialisation of a Date
object since it serialises it as a void object. The
dojox.json.ref library provides only a partial solution for
this problem. Indeed, it correctly serialises the Date object
into an ISO-UTC –formatted string, but it is not able to re-
convert it again into a Date object without explicitly
instructing the deserialiser with a list of Date property
names. However, even doing this, the solution was not able
to cover some situations, for instance when an object has
multiple properties of Date type at different nesting levels
and the same name. In this case only the first occurrence
was correctly preserved with that technique. Our solution is
simpler and more general: we encapsulate the ISO-
formatted date in an object holding a property that marks
the object in such a way that the deserialiser can quickly
identify and correctly restore the object as a Date Object.

Properties dynamically assigned to objects
In JavaScript all the non-primitive data types (like
associative arrays, arrays, strings, functions...) are objects
and, as such, can have dynamically assigned properties.
Such properties are saved in the state by standard JSON
only if the object containing them is an associative array
(or Map), otherwise (namely, if they are included by other
types of objects) they are ignored. An example of this
problem can occur while serialising the following excerpt:
var array = [value1 , value2];
array.dynProp = someValue;

In order to manage this issue, we have identified a solution
that successfully manages saving such dynamic properties
also for other types of objects apart from associative arrays.
So far we have implemented this solution for managing
arrays, though our solution is easily extendible to other
cases. In our solution we appropriately modified the
dojox.json.ref serialiser in such a way that it encapsulates
each array in an object holding a property that contains all
the array’s dynamic properties.

References to DOM nodes
The JavaScript of a web page can access the DOM tree
nodes by reference (e.g. to read or modify them). Thus, the
persistence of such references is needed in order to
preserve the state.
Indeed, one of the most common operations carried out on
the DOM tree is to find a node by providing its identifier
(by using the getElementById method, which provides a
reference to a DOM node that has a unique ID).
Unfortunately, standard JSON is not able to correctly
serialise JavaScript variables containing references to DOM
nodes. The following cases can happen: either the

108

concerned element has an ID, or it does not have an ID, or
it does not belong to the DOM.
Consider the following excerpt:
var element = getElementById("myHtmlElement");
var image = new Image("imageSource");

In our solution, when an object of type HtmlElement is
actually a reference to a DOM node, we verify whether it
has an ID. In this case, such an ID is saved within the state,
otherwise our solution assigns an ID to it. In the remaining
case (when the object does not belong to the DOM, like the
image variable included in the above code excerpt), the
value of the object is saved by storing the values of all of
its public properties using the JavaScript library JsonML
(http://jsonml.org/).

SAVING, TRANSMITTING AND RESTORING THE STATE
WITHIN THE MIGRATION PLATFORM
In this section we focus on how the migration platform
supports the saving, transmission and restoring of the
JavaScript state of Web pages. The core of our solution is
represented by the JavaScript JSStateMigrator library we
have developed for this goal. Such a library has two main
methods:

 saveState(): saves the current JavaScript state into a
JSON message represented by a Map object, and
includes all the global variables of the application and
their properties;

 loadState(), takes as input parameter the JSON message
representing the state of the migrated application and
restores it within the target device.

In the following sections we describe them further.

Saving the State
The saveState() method works in the following way. As
previously mentioned, we use the for…in statement as the
main mechanism for saving the value of all the JavaScript
global variables (which are properties of the window
object). As also noted before, we added to the for...in cycle
a condition to check whether a certain property has to be
excluded since it belongs to the BOM variables. After
having done this, we create a JSON message containing a
couple (key, value) for each property of the concerned
global object. It is worth noting that the serialised
JavaScript state is no longer in standard JSON, because the
serialised properties are enriched with additional
information that will enable the custom deserialiser to
correctly handle special objects that cannot be
[de]serialised by using standard JSON (e.g. Date objects,
array properties with non-numerical keys, DOM elements,
or even HTML elements which are not in the DOM).

However, the entire JavaScript state is now included in
such a JSON message.

Transmitting and restoring the state
Regarding the transmission of such a JSON message, this is
carried out by an AJAX request directed to the Migration
Server. Through such a request, the client passes both the
DOM of the page and the JavaScript state to a servlet
(which is on the Migration Server). According to such
information, the servlet creates the corresponding page.
This means that first the servlet identifies the <body>
element of the page derived from the received DOM. Then,
it appends a JavaScript function, whose goal is to update
the JavaScript variables contained in the page, to the
current content (if any) of the onload attribute of the
<body> element. After having done such modifications to
the page, the servlet stores the updated page (containing the
up-to-date state) in a specific location of the server, and
also stores the JSON message received from the AJAX
script in a file. According to such information, the server
then builds the URL from which the target device browser
will load the page with the updated state. So, by analysing
the received JSON message the target device browser will
be able to restore the state in the target device (loadState()
method). This is done by deserialising all the properties of
the abovementioned JSON object and restoring them onto
the corresponding global variables. Then, the pending
timers are also created and the central timer is started again
(as explained above). So, the actual restoring of the
JavaScript state of the Web application is carried out within
the client, after the Web page has been loaded.

AN APPLICATION EXAMPLE: JS-TETRIS
To show an example application, we consider a Web
(XHTML+JavaScript) implementation of Tetris
(http://www.gosu.pl/tetris/), a widely known arcade game.
The considered game (see Figure 2) is composed of a
12x22 grid, in which objects with different geometrical
shapes fall to the bottom of the game board. The player
controls the pieces by moving/rotating them, trying to make
them fit each other so as to compose a horizontal line
through them. When this occurs, the line(s) of pieces
disappear and the score increases. As the horizontal lines
are completed, the game becomes more difficult (e.g. the
pieces fall progressively faster). Alternatively, if the player
leaves holes within the horizontal piece rows, they do not
disappear but start to pile up, until the player is no longer
able to play, and the game will end. The UI of the game is
composed of a number of nested DIV elements. First, there
is the top level DIV (representing the whole game), which
in turn is vertically decomposed into a DIV element (for the
menu) and another DIV element (with the game board).

109

Figure 2: Desktop-to-mobile Migration of the Example

The menu is in turn composed of a number of DIV
elements, each of them including a menu item (the control
buttons, the next piece, the score data, ...). The board area
is a DIV element which initially contains only the twelve
vertical columns, which act as guides for the pieces.
However, as soon as the game progresses, such elements
will contain the various small, elementary squares (each
of them represented by a DIV element) composing each
game piece. The game layout and the initial positioning of
its elements are handled by an associated CSS stylesheet.

All the JavaScript code is included within the constructor
function Tetris, instantiated after the Web page is loaded,
and then saved in a global variable. Within this function,
various nested functions are defined: start, reset, pause,
gameOver, random, as well as up, down, left, right, space
in order to control the pieces. In addition, other
constructor functions are defined such as Window,
Keyboard, Area, Puzzle, Stats, HighScores, which define
corresponding properties of the game. In addition, in the
Tetris code there is also the definition of some anonymous
functions, which are assigned to properties of DOM
nodes, for instance ($("tetris-menu-start").onclick is for
starting a new game). Finally, there are also additional
properties defining the board area (unit, areaX, areaY). In
the desktop-to-mobile migration of the Tetris game (see
Figure 2) our migration platform exploits some of the
features for managing the JavaScript state we described
before. Indeed, this game has object references such as
references to HTML elements, and timers.

CONCLUSIONS AND FUTURE WORK
In this paper we have presented our approach for
supporting JavaScript state persistence and, consequently,
task continuity in interactive Web migratory applications,

and describe its application to a case study in the game
domain. Future work will be dedicated to carrying out a
number of user tests to assess the usability of the
presented solution on various case studies.

ACKNOWLEDGMENTS
We gratefully acknowledge support from the Artemis EU
SMARCOS and the ICT EU SERENOA projects.

REFERENCES
1. Bharat, K. A. and Cardelli L. Migratory Applications.

In proceedings of User Interface Software and
Technology (UIST ‘95), 1995, pp. 133-142.

2. Chung, G., Dewan P. A mechanism for Supporting
Client Migration in a Shared Window System,
Proceedings UIST’96, pp.11-20, ACM Press.

3. Dojox.json.ref library, available at
http://docs.dojocampus.org/dojox/json/ref

4. Ghiani, G., Paternò F., Santoro C. On-demand Cross-
Device Interface Components Migration, Proceedings
Mobile HCI 2010, pp. 299 – 308, 2010, ACM Press.

5. Kozuch, M., Satyanarayanan, M. Internet
Suspend/Resume, Proceedings of the Fourth IEEE
Workshop on Mobile Computing Systems and
Applications (WMCSA’02) IEEE Press, 2002.

6. Melchior, J., Grolaux, D., Vanderdonckt, J., Van Roy,
P. A toolkit for peer-to-peer distributed user interfaces:
concepts, implementation, and applications.
Proceedings ACM EICS 2009: 69-78.

7. Quan, D., Huynh, D., Karger, D. R., and Miller, R.
User interface Continuations. Proceedings 16th ACM
UIST Symposium. 2003. ACM Press, pp. 145-148.

110

