
A Tool Suite for Integrating Task and System
Models through Scenarios

David Navarre2, Philippe Palanque2, Fabio Paternò1, Carmen Santoro1, and
Rémi Bastide2

1 CNUCE-CNR,
Via V. Alfieri 1, 56010 Ghezzano, Pisa, Italy

2 LIHS, Université Toulouse 1,
Place Anatole France, 31042 Toulouse Cedex, France

{navarre, palanque, bastide}@univ-tlse1.fr
{f.paterno, c.santoro}@cnuce.cnr.it

Abstract. This paper presents a set of tools supporting the develop-
ment of interactive systems using two different notations. One of these
notations, called ConcurTaskTrees (CTT), is used for task modelling.
The other notation, called Interactive Cooperative Objects (ICO), is used
for system modelling. Even though these two kinds of models represent
two different views of the same world (users interacting with interactive
systems), they are built by different people and used independently. The
aim of this paper is to propose the use of scenarios as a bridge between
these two views. On the task modelling side, scenarios are seen as pos-
sible traces of activities, while on the system side, they are viewed as
traces of actions. This generic approach is presented in a case study in
the domain of Air Traffic Control.

1 Introduction

The research area of model-based design and evaluation of interactive applica-
tions [12] aims at identifying models able to support design, development, and
evaluation of interactive applications. Such models highlight important aspects
that should be taken into account by designers. Various types of models, such
as user, context, and task models, have proved to be useful in the design and
development of interactive applications.

In particular, interactive systems are highly concurrent systems, which sup-
port several devices media and tools, and are characterised by dialogues and the
presentations they provide for communicating information to users. However,
to build effective presentations it is important to understand the activities that
users want to perform with them. Such activities can be highly concurrent with
even multi-user interactions and such concurrency is a source of flexibility but
at the same time has to be carefully designed and controlled.

In addition, we have to take into account that the concurrency provided to
users needs to be supported by the system underneath. Thus we need not only
models for specifying user activities while interacting with the system, but also

C. Johnson (Ed.): DSV-IS 2001, LNCS 2220, pp. 88–113, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



A Tool Suite for Integrating Task and System Models through Scenarios 89

for specifying the underlying system. Such models should allow different levels of
refinement depending on the needs of the users and should be powerful enough to
express all the different relationships occurring among the various components
without introducing too many low-level details.

Having models is not sufficient to support a formal analysis, methods and
tools are strongly requested to help designers use the information contained
in such models during their work. In particular, in the field of model-based
approaches to human-computer interaction only recently tools supporting such
approaches have started to be developed. Unfortunately, often such tools are
rather rudimentary, usable only by the groups that developed them. Even less
attention has been paid to the integration of models and tools developed for
different purposes. In this paper we present the results of a work that aims to
overcome this limitation. In particular, we show and discuss how we have reached
the integration of a set of tools for task modelling with a set of tools for user
interface system modelling through the use of abstract scenarios. The goal of
such integration is to provide designers with an environment enabling them to
see, for example, how a sequence of user tasks can be related to the specification
of the behaviour of the underlying system’s interconnecting components.

In the paper, after a short discussion of related works, we recall the basic
concepts of the approaches and tools that we aim to integrate. Then, we discuss
the architecture of the solution identified. As both the CTT and ICO notations
are tool supported (the environments are respectively CTTE and PetShop), an
integration tool (implemented at LIHS) based on this notion of scenarios is
presented. An application example of the integrated set of tools is discussed
before drawing some concluding remarks. The case study presented has been
addressed in the European Project MEFISTO, which is a long-term research
project dedicated to the design of safety critical interactive systems with the
support of formal methods. In particular, the project has focused on the air
traffic control domain from which this case study has been drawn.

2 Related Work

The use of models has often been criticised for the effort required to develop
them and the difficulties in using the information that they contain to support
design and evaluation. After having carefully evaluated the need for introducing
a new notation, the first concern should be providing users with tools to make
its use easier and more effective. The problem is that getting used to another
notation involves a significant amount of effort and time spent by the potential
users in order to understand features, semantics and meaning of the notation’s
conventions. In addition, even when users have understood the main features of
the notation, there is still the risk that their effort might be wasted if they find
that using it is difficult and not really feasible or appropriate for intensive use
and real case studies.

Indeed, one of the strengths of a notation is the possibility of supporting it
through automatic tools. Developing a formal model can be a long process, which



90 D. Navarre et al.

requires a considerable effort. Automatic tools can ease such activity and can
help designers to get information from the models, which is useful for supporting
the design cycle.

Some research prototype was developed years ago to show the feasibility of
the development of such tools, however the first prototypes were rather limited in
terms of functionality and usable mainly by the people who develop them. Only
in recent years some more engineered tools have been developed, in some cases
they are also publicly available. For example, Euterpe [18] is a tool supporting
GTA (Groupware Task Analysis) where task models are developed in the hori-
zontal dimension with different panels to edit task, objects, actors. A simulator
of task models of single user applications has been given with the support of an
object-oriented modelling language [3].

Mobi-D [16] and Trident [4] are examples of tools aiming to use information
contained in models to support design and development of user interfaces. In
particular, in Mobi-D the designer can choose different strategies in using the
information contained in task and domain model to derive the user interface
design.

In our work we envision a solution based on the use of two tools (CTTE and
PetShop) developed to support two different types of models. The former is a
tool for task modelling supporting a unique set of functionality (simulation of
models of cooperative applications, comparison of task models, support of use
of scenarios to develop task models, . . . ). The latter supports system models
described using Petri nets in an object-oriented environment. PetShop is able to
support editing of a Petri Net controlling the dialogues of a user interface even at
run-time thus allowing dynamic change of its behaviour. Their integration allows
thorough support to designers since early conceptual design until evaluation of
a full prototype.

3 Our Approach

Various models have been proposed in the human-computer interaction field.
Task and system models are particularly important when designing and devel-
oping interactive software systems. In both industrial and academic communities
there is a wide agreement on the relevance of task models as they allow express-
ing the intentions of the users and the activities they should perform to reach
their goals. These models also allow designers to develop an integrated descrip-
tion of both functional and interactive aspects. Within the development lifecycle
of an application the task-modelling phase is supposed to be performed after
having gathered information on the application domain and an informal task
analysis phase. The result of the latter one is an informal list of tasks that have
been identified as relevant for the application domain.

After this step, in developing a task model designers should be able to clarify
many aspects related to tasks and their relationships. In some cases task models
are first developed and then used to drive the system design. In other cases



A Tool Suite for Integrating Task and System Models through Scenarios 91

designers have to address an existing system and need to develop a task model
to better understand and evaluate its behaviour [11].

System models describe important aspects of the user interface. In this work
we pay particular attention to the dialogue supported by the system: how user
actions and system feedback can be sequenced. Thus, the purpose of these models
is to support the analysis of the user interface system, rather than the related task
model. They provide description of the objects making up the user interface and
the underlying system and how they behave, whereas in the task model there is a
description of the logical activities supported. There is an intersection between
the aspects described by the two models (the actions that can be performed
at the user interface level) but each of them also captures aspects that are
not represented in the other one. The task model also describes cognitive user
activities (such as deciding a strategy to find information) and the system model
contains a description of the system architecture.

Scenarios [5] are a well-known technique in the human-computer interaction
area. They provide a description of one specific use of a given system, in a given
context. They are an example of usage. Their limited scope is their strength
because they can easily highlight some specific aspect and are easily understood
and remembered. Thus, they can also be considered as a useful tool to compare
different models and analyse their relationships.

In the design process, one important goal is to check if the task model ful-
fills the expected requirements and if the system model matches the planned
behaviour. However, what cannot be missed is checking if both two models are
consistent, which means if both specifications really refer to the same user in-
terface. This requires checking if for each user action assumed in the system
model there is an actual counterpart in the task model, and each system output
provided to the user has been foreseen in the task model specification.

Another relevant point that has to be highlighted is that these two models
can be specified by different people and in distinct moments of the design cycle
of the user interface development process. Indeed, especially in real case studies
sometimes the task models will be developed at first, sometimes they might
be specified after the system model has already been obtained. So, we need an
approach that does not have specific constraints and requirements on what is
assumed to be available at a certain phase of the system design, as it can be
equally used efficiently in both cases.

In our approach, we used abstract scenarios as the common “lingua franca”
to ensure that there is actual correspondence between what has been specified
within the task model and what has been specified in the system model. The
idea is to focus the attention on specific examples of usage either on the system
side or on the tasks side and to check if on these simple examples of the system
use such correspondence exists.

Considering the task model-side, in our approach we used the ConcurTask-
Trees notation for specifying tasks. The formal semantics of the operators used
in this notation is in [13]. This notation allows users to explicitly express how
the allocation of the different tasks has been assumed in the system design.



92 D. Navarre et al.

Such allocation could be on the user alone (user tasks), on the application alone
(application tasks), on the interaction between the user and the application (in-
teraction tasks), or if the activity is too general to be specifically allocated on
each of them (abstract task). Explicit indication of task allocation is one aspect
which makes the notation very suitable for designers of interactive systems, be-
cause they have to explicitly indicate which part of the interactive system (user,
application, interaction between them) has to undertake each task.

This aspect proves to be effective especially when both comparison and in-
tegration of different models has to be carried out, such as in our case. The
notation provides the ability to specify in the task model when system support
is requested on the user interface. This allows comparing and cross-checking if
the task model reflects and is adequately supported by the corresponding sys-
tem model. More specifically, the points that have to be carefully checked in the
task model specification are the interaction and application tasks. Application
tasks indicate that at a certain point during a session a specific behaviour of
the system is expected. This behaviour can be expressed in terms of a specific
feedback of an action the user has performed while interacting with the system;
in terms of a result the system has produced after some elaboration; in terms of
availability of a specific input needed to users in order to perform their tasks.
All those possibilities have to be carefully supported especially if the considered
domain is vast and complex as the air traffic control field considered in our case
study. Such domain is composed of a number of entities that maintain a com-
plex relationship structure, due to their internal structure and to the dynamic
behaviour they follow, which has to be appropriately presented to the users.

4 A Case Study

This case study has been considered in the European Project MEFISTO which is
a long term research project dedicated to the design of safety critical interactive
systems, with particular attention to the air traffic control application domain.

After a short overview of the case study in sub-section 4.1, this section
presents the various models built in order to represent both predictive user ac-
tivities and the system under consideration. Sub-section 4.2 presents the use
of CTT and its environment for tasks modelling and simulation as well as the
identification of scenarios from the task models. Sub-section 4.3 presents the use
of the ICO formalism and its support environment PetShop for modelling and
executing interactive systems.

4.1 Informal Description of the Case Study

This example is taken from a case study related to En-route Air Traffic Control
with the support of data-link technologies in the ATC field. Using such applica-
tions air traffic controllers can communicate with pilots in a sector (a portion of
the airspace) through digital commands. In particular, we focus on the activities
related to when an aircraft changes air sector.



A Tool Suite for Integrating Task and System Models through Scenarios 93

A representation of the radar image is shown in Figure 1. On the radar image
each plane is represented by a graphical element providing air traffic controllers
with useful information for handling air traffic in a sector. In the simplified
version of the radar image we are considering, each graphical representation of
a plane is made up of three components: a label (providing precise information
about the plane such as ID, speed, cleared flight level, . . . ), a dot (representing
the current position of the plane in the sector) and a speed vector (a graphical line
from the dot which represent the envisioned position of the plane in 3 minutes).

An Air Traffic Control simulator is in charge of reproducing the arrival of
new planes in the sector while in reality they would be instantiated on the
user interface by calls from the functional core of the application processing
information provided by physical radars.

Initially the radar image is empty. Each time a new plane is randomly gener-
ated it is graphically represented on the radar image. It is possible for the user
to select planes by clicking on its graphical representation. Clicking on the flight
representation will change its state to the Assume state meaning that the air
traffic controller is now in charge of the plane. Assuming the plane changes its
graphical representation as it can be seen on the right-hand side of Figure 1.
Once a plane is assumed, the controller can send clearances to this plane. In this
case study we only consider the change of frequency functionality corresponding
to the controller’s activity of transferring a plane to an adjacent sector. When

the plane has been taken on, the button is enabled (see plane 1123 on
the right-hand side of Figure 1). Clicking on this button opens a menu allowing
the controller selecting the new value for the frequency.

Fig. 1. A screen shot of the radar screen with planes (right-hand side, one the planes
1123 is assumed)



94 D. Navarre et al.

4.2 The ConcurTaskTrees Notation and Environment Used in the
Case Study

We first introduce the notation for task modelling that has been used and the
related environment.

The ConcurTasktrees Notation
There are various approaches that aim to specify tasks. They differ in aspects
such as the type of formalism they use, the type of knowledge they capture, and
how they support the design and development of interactive systems. In this
paper we consider task models that have been represented using the Concur-
TaskTrees notation [12]. In ConcurTaskTrees activities are described at different
abstraction levels in a hierarchical manner, represented graphically in a tree-like
format (see Figure 2 for an example). In contrast to previous approaches, such
as Hierarchical Task Analysis, ConcurTaskTrees provides a rich set of operators,
with precise meaning, able to describe many possible temporal relationships
(concurrency, interruption, disabling, iteration, and so on). The notation allows
designers to obtain concise representations describing many possible evolutions
over a user session. The formal semantics of the operators has been given in [13].
The notation also supports the possibility of using icons or geometrical shapes
to indicate how the performance of the tasks is allocated.

Fig. 2. The abstract task model of the case study

For each task it is possible to provide additional information including the
objects manipulated (for both the user interface and the application) and at-
tributes such as frequency. In addition, as in the design of complex cooperative
environments more and more attention is being paid to the horizontal mecha-
nism of coordination between different roles, ConcurTaskTrees allows designers
to specify explicitly how the cooperation among different users is performed.

We give an overview of the main features of the notation by commenting on
two excerpts of specification from the considered case study.

The activity of controlling a plane (Control a plane) is an iterative task (∗
is the iterative operator) which consists of either assuming a plane (Assume a
plane task) or giving clearance to the plane (Give clearance task). Those two
activities are mutually exclusive, as you can see from the choice operator [].



A Tool Suite for Integrating Task and System Models through Scenarios 95

The activity of assuming a plane is composed of deciding which plane has to
be assumed (Select a plane task, the associated icon emphasizes the cognitive
nature of this user task). Once this activity has been performed it is possible to
select the button related to the plan (see the Enabling operator with information
passing [] >>, which highlights that only after the first activity has been carried
out and delivered information to the second task, the latter can be performed).
In addition, the Click plane task requires an explicit action of the controller on
an element of the user interface so it belongs to the category of interaction tasks
and the appropriate icon has been used. The Give clearance task is composed of
two different activities: Give Aborted Clearance and Give Validated Clearance,
depending on whether the clearance has been aborted or not. Each of these two
activities is a high-level one, whose performance cannot be entirely allocated
either to the application alone, or to the user alone, or to an interaction between
the user and the system: this is expressed by using a cloud-shape icon associated
to the so-called abstract tasks. The specification of each of these two tasks is
described in Figure 3.

Fig. 3. The concrete and detailed task model of the case study

The Give Aborted Clearance task is composed of the controller’s cognitive
activity of selecting a plane (Select a plane AC), then they select the button re-
lated to the frequency (Click FREQ). This triggers the opening of the associated
menu on the controller’s user interface (Open Menu, note the icon associated to
the category of the application tasks), then the controller can think about a
specific frequency (in the task model the possibility of performing or not this
task is expressed by the option operator represented by squared brackets [T ],
see the Select Frequency task). Then, controllers choose the appropriate value
of frequency within the user interface (Click Frequency task, which can be per-
formed more than one time, as you can see from the iterative operator ∗) until
they decide to interrupt the entire activity (see the Disabling operator [> which
refers to the possibility for the second task to disable the first one), by selecting
the related object in the user interface (Abort task).

In case of a clearance that is sent to the pilot (Give Validated Clearance),
the sequence of actions is mainly the same, apart from the last one (Send task),
with which the controller sends the clearance to the pilot.



96 D. Navarre et al.

The ConcurTasktrees Environment (CTTE)
A set of tools have been developed to specify task models for co-operative appli-
cations in ConcurTaskTrees and to analyse their content. The CTTE tool [15]
has various features supporting editing of task models. It can automatically check
the syntax of the specification, give statistical information, compare task mod-
els, simulate their behaviour and give examples of scenarios of use. The CTTE
editing environment is intended as a computer-based support tool for CTT, and
is freely downloadable from http://giove.cnuce.cnr.it/ctte.html.

The tool has been used in a number of projects and at several universities for
teaching purposes. It was used to support design of an adaptable web museum
application. The application provided different ways to navigate and present in-
formation depending on the current user model (tourist, expert, student). We
developed a task model for each type of user. The task models also shared some
portions for tasks that were common to different types of users. In the MEFISTO
project, CTTE has been used to model various air traffic control applications
and support their design and evaluation. Large specifications, including hun-
dreds of tasks, were developed. In this project the tool was proposed to several
teams belonging to organizations that design and develop systems for air traffic
control; in some cases the teams also included people with different backgrounds.
At the University of York an evaluation exercise was developed using a number
of techniques (including cognitive dimensions for notations and cooperative eval-
uation). In the GUITARE project, various teams from software companies have
used the tool for different application domains. Some of these teams included
people without any background in computer science, who nevertheless were able
to use the tool satisfactorily. Methods have also been developed for support-
ing user interface design and generation starting with task models specified by
CTTE.

With this tool becomes very intuitive and effective to exploit the graphical
and hierarchical nature (tree-like format) features of the notation by all the op-
erations (cut, paste, insert) that are possible on tree-like structures. In addition,
even the specific layout selected for the tool conveys further useful information
about the notation. For instance, the relative positions of the user interface ob-
jects presenting the operators within the tool convey information about their
priorities (sorted top to bottom from highest to lowest operator priority). In
addition, it is possible to recall the meaning of any operator by means of use-
ful tool tips available within the environment (such feature is found very useful
especially by users who are rather new to the notation and unable to recall the
meaning of the operators). Finally, the ability to structure the specification with
some tasks that can be referenced both in the single-user and cooperative parts
is well supported by the environment because it allows easy switching between
these different views. These simple examples, relative to the case of the CTT
notation, serve to highlight the extent to which the use of a suitable tool can
support users while building the task specifications.

In Figure 4 the simulator provided in the CTT Environment is shown. The
simulator has been implemented following the formal semantics of the CTT



A Tool Suite for Integrating Task and System Models through Scenarios 97

Fig. 4. CTTE for extracting scenarios

notation. When this tool is activated, in the left-hand part of the window it
is possible to highlight (by means of a different colour) all the tasks that are
enabled at any moment of the simulation. This means all the tasks that can be
performed at a specific time, depending on the tasks that have been previously
carried out. The execution of a task can be performed either within the graphical
panel on the left (a task can be executed by double-clicking on the related task
icon), or by selecting the task name within the list of “Enabled tasks” panel on
the right. In addition, it is possible to load a previously created scenario. Its
composing tasks will appear in the “Scenario to be performed” list from where
it is possible to simulate its performance again.

As an example of scenario we have chosen to extract from the task model of
Figure 3 the following trace of low-level tasks (this scenario has been generated
using CTTE and is displayed on the right-hand side of Figure 4):

– First the controller selects one of the planes not assumed yet (this is a user
task)

– Then the controller clicks on this plane to assume it (interaction task)
– Then the controller decides to change the current frequency of one of the

flight assumed (user task)
– Then the controller clicks on the label FREQ to open the data-link menu

(interaction task)
– Then the controller selects (in his /her head) a new frequency for this plane

(user task)
– Then the controller clicks on one of the available frequencies for this plane

(interaction task)



98 D. Navarre et al.

– Then the controller clicks on the SEND button to send the new frequency
to the aircraft ( interaction task)

The performance of this scenario on the system model will be detailed in section
5.2.

4.3 ICOs and PetShop Used in the Case Study

System modelling is done using the ICO formalism and its development environ-
ment is called PetShop. Both of them are presented through the case study. The
ICO formalism is the continuation of early work on dialogue modelling using
high-level Petri nets [1].

ICO formalism
The various components of the formalism are introduced informally hereafter
and all of them are fully exemplified on the case study. A complete and formal
presentation of this formalism can be found in
http://lihs.univ-tlse1.fr/palanque/Ps/ICOFormalDef.pdf.

The Interactive Cooperative Objects (ICOs) formalism is a formal notation
dedicated to the specification of interactive systems. ICOs use concepts bor-
rowed from the object-oriented approach (dynamic instantiation, classification,
encapsulation, inheritance, client/server relationship) to describe the structural
or static aspects of systems, and uses high-level Petri nets to describe their dy-
namic or behavioural aspects. ICOs were originally devised for the modelling
and implementation of event-driven interfaces. An ICO model of a system is
made up of several communicating objects, Petri nets describe both behaviour
of objects and communication protocol between objects. In the ICO formalism,
an object is an entity featuring four components: services, behaviour, state and
presentation.

Services (or Interface): The interface specifies at a syntactic level the ser-
vices that a client object can request from a server object that implements
this interface. The interface details the services supported and their signa-
ture: a list of parameters with their type and parameter-passing mode, the
type of the return value, the exceptions that may possibly be raised dur-
ing the processing of the service. For describing this interface we use the
CORBA-IDL language [7]. An ICO offers a set of services that define the
interface (in the programming language meaning) offered by the object to its
environment. In the case of user-driven application, this environment may
be either the user or other objects of the application. The ICO formalism
distinguishes between two kinds of services: services offered to the user (user
services) and services offered to other objects.

Behaviour: The behaviour of an ICO defines how the object reacts to external
stimuli according to its inner state. This behaviour is described by a high-
level Petri net called the Object Control Structure (ObCS) of the object.



A Tool Suite for Integrating Task and System Models through Scenarios 99

State: The state of an ICO is the distribution and the value of the tokens (called
the marking) in the places of the ObCS. This defines how the current state
influences the availability of services, and conversely how the performance
of a service influences the state of the object.

Presentation: The Presentation of an object states its external appearance.
It is made up of three components: the widgets, the activation function
and the rendering function. This Presentation is a structured set of widgets
organized in a set of windows. The user - system interaction will only take
place through those widgets. Each user action on a widget may trigger one
of the ICO’s user services. The relation between user services and widgets
is fully stated by the activation function that associates the service to be
triggered to each couple (widget, user action). The rendering function is in
charge of presenting information according to the state changes that occur. It
is thus related to the representation of states in the behavioural description
i.e. places in the high-level Petri net.

ICOs are used to provide a formal description of the dynamic behaviour of an
interactive application. An ICO specification fully describes the potential inter-
actions that users may have with the application. The specification encompasses
both the “input” aspects of the interaction (i.e. how user actions impact on the
inner state of the application, and which actions are enabled at any given time)
and its “output” aspects (i.e. when and how the application displays informa-
tion that is relevant to the user). An ICO specification is fully executable, which
gives the possibility of prototyping and testing quickly an application before it
is fully implemented. The specification can also be validated using analysis and
proof tools developed within the Petri nets community.

ICO environment (PetShop)
In this section we introduce the PetShop environment and the design process it
supports. The interested reader can find more information in [17].

Figure 5 presents the general architecture of PetShop. The rectangles rep-
resent the functional modules of PetShop. The documents-like shapes represent
the models produced and used by the modules.

Presentation of ICOs and PetShop on the case study
In this section we only present a subset of the set of classes and objects of the
case study specification. However, a complete description of the specification can
be found in [6].

In this paper the case study is modelled as a set of three cooperating classes:
MefistoPlaneManager, MefistoPlane and MefistoMenu. These three classes are
full fledged and we will describe successively their components.

The class MefistoPlaneManager
The class MefistoPlaneManager is the class in charge of handling the set of

planes in a sector. Each time a new plane arrives in the sector the MefistoPlane-
Manager instantiates it from the class MefistoPlane (see paragraph The class



100 D. Navarre et al.

Fig. 5. Tools available for designers in PetShop Environment

MefistoPlane). During the execution this class will only have one instance. The
set of services offered by this class is described in Figure 6.

interface MefistoPlaneManager {
void closePlane(in MefistoPlane p);
void terminatePlane(in MefistoPlane p);
void addPlane(in MefistoPlane p);

};

Fig. 6. IDL description of the class MefistoPlaneManager

This IDL description shows that the class offers three services dealing with
the managing of the planes in a sector: adding a plane, terminating a plane
(when it leaves a sector) and closing the menu of a plane.

Figure 7 presents the behaviour of this i.e. the state of the class and, ac-
cording to the current state, what the services available to the other objects of
the application are. The transition UserOpenPlane has an input arc from place
AssumedPlanes meaning that a controller can only open a menu on a plane that
has previously been assumed. The inhibitor arc between that transition and the
place OpenedPlanes states that only one plane at a time can have the data-link
menu opened.

Figure 8 and Figure 9 describe the presentation part of the ICO Mefisto-
PlaneManager. From the rendering function it can be seen that this class only
triggers rendering through the class MefistoPlane as each time a new token enters
in the place Planes the graphical function Show is triggered on the corresponding
plane.

The class MefistoPlane
The class MefistoPlane is also an ICO class. Graphical information is added

with respect to the class MefistoPlaneManager in order to describe how the plane



A Tool Suite for Integrating Task and System Models through Scenarios 101

Fig. 7. ObCS description of the class MefistoPlaneManager

is rendered on the screen. This information is given on Figure 12 while Figure
10 gives the IDL description, Figure 11 describes the behaviour of MefistoPlane
and Figure 13 presents the rendering function. It is interesting to notice that
this class does not feature an activation function. This is due to the fact that
all the user interaction on a plane takes place through the MefistoPlaneManager
class.

The class MefistoMenu
This class is in charge of the interaction taking place through the data-link

menu that is opened by clicking on the button FREQ on the plane label.

Widget Event Service
Place Type
Planes Plane LabeClick userAssume
AssumedPlanes Plane ButtonClick userOpenMenu

Fig. 8. The activation function of the class MefistoPlaneManager



102 D. Navarre et al.

ObCS Element Feature Rendering method
Place Planes token < p > enterred p.show()

Fig. 9. Rendering function of the MefistoPlaneManager

interface MefistoPlane {
void open();
void close();
void assume();
void validate(in short x);

};

Fig. 10. IDL description of the class MefistoPlane

Figure 14 provides the set of services offered to the other objects of the
application; Figure 15 describes its behaviour.

Figure 16, Figure 17 and Figure 18 give the presentation part of the class
MefistoPlane.

This description still lacks the code of the functions given in Figure 16 and
in Figure 12 for describing precisely the graphical behaviour of the classes. This
is not given here for space reasons.

5 The Integration of the Models: CTT-ICO Integration

5.1 Integration Framework

The integration framework we have followed takes full advantage of the specific
tools that we have developed initially in a separate manner. One advantage
of this separation is that it allows for independent modification of the tools,
provided that the interchange format remains the same.

We have previously investigated the relationship between task and system
models. For instance in [10] we proposed a transformation mechanism for trans-
lating UAN tasks descriptions into Petri nets and then checking whether this
Petri net description was compatible with system modelling also done using
Petri nets. In [9] we presented the use of CTT for abstract task modelling and
high level Petri nets for low-level task modelling. In that paper the low-level
task model was used in order to evaluate the “complexity” of the tasks to be
performed, by means of performance evaluation techniques available in Petri net
theory.

The two notations model slightly different aspects: CTT is a notation for
task modelling whereas ICO is a notation for specifying concurrent systems, thus
an automatic conversion from one notation to the other one would have been
difficult. We have preferred a different solution that is easier to implement and
better refers to the practise of user interface designers. Indeed, often designers



A Tool Suite for Integrating Task and System Models through Scenarios 103

Fig. 11. ObCS of the class MerfistoPlane

use scenarios for many purposes and to move among the various phases of the
design cycle. So, they can be considered a key element in comparing design
solution from different viewpoints.

CTT Environment
The different parts of the framework for CTT-PetShop integration are shown in
Figure 19 and referred by means of numbers. For instance, the outputs provided
by CTT environment and their processing are highlighted on Figure 19 as part
1 and part 2. As described above, CTT environment provides a set of tools
for engineering task models. For the purpose of integration we only use the
interactive tool for editing the tasks and the simulation tool for task models that
allows scenario construction from the task models. Thus the two main outputs
are a set of task models and a set of scenarios. These two sets are exploited in
the following way:



104 D. Navarre et al.

public class WidgetPlane {
//Attributes

//A button to open the menu for the change of frequency
Button freqButton;
//A label to display the name of the plane
Label label;

//Rendering methods
void show() {

//show plane
}
void showAssumed() {

//show plane as assumed
}
void showOpened() {

//show plane as opened
}
void showTerminated() {

//show plane as terminated
}
void setFreq(short x) {

//show the new frequency
}

}

Fig. 12. The presentation part of the class MefistoPlane

– from the ConcurTaskTrees specification a set of interaction tasks is ex-
tracted. This set represents a set of manipulations that can be performed by
the user on the system (part 1 of Figure 19),

– the set of scenario is used as is by the integration tool (part 2 of Figure 19).

ICO Environment
The outputs of the ICO environment and their processing are highlighted by
part 3 and part 4 of Figure 19). Amongst the features of the ICO environment
(PetShop), the one that is used for the integration is the tool for editing the
system model. It allows executing the system model.

ObCS Element Feature Rendering method
Place Assumed token entered showAssumed
Place Opened token entered showOpened
Place Terminated token entered showTerminated
Place Value token < x > entered setFreq(x)

Fig. 13. The rendering function of the class MefistoPlane



A Tool Suite for Integrating Task and System Models through Scenarios 105

interface MefistoMenu {
void open();
void close();
void send();
void setValue(in short x);

};

Fig. 14. IDL description of the class MefistoMenu

Fig. 15. ObCS of the class MefistoMenu

From this specification we extract a set of user services (part 3 of Figure 19)
and from the ICO environment we use the prototype of the system modelled
(part 4 of Figure 19).

A user service is a set of particular transitions that represents the functional-
ities offered to the user by the system. These transitions are performed when and
only when they are fireable and the corresponding user actions are performed
(which is represented by the activation function in the ICO formalism).

The Correspondence Editor
The activities that are managed by the correspondence editor correspond to part
5 and part 6 of Figure 19.

The first component of the correspondence editor relates interaction tasks
in the task model to user services in the system model (part 5 of Figure 19).
When the task model is refined enough, the leaves of the task tree represent
low-level interactions on the artifacts. It is then possible to relate those low-level
interactive tasks to user actions in the system model that are represented, in the
ICO formalism, by user services.



106 D. Navarre et al.

public class WidgetMenu {
//Attributes

//Button to validate or cancel the current choice for frequency
Button sendButton, cancelButton;
//A comboBox to show the set of possible frequency
ComboBox freqComboBox;

//Rendering methods
void show() {

//show menu as opened
}
void hide() {

//hide menu
}

}

Fig. 16. The presentation part of the class MefistoMenu

Widget Event Service
Place Type

sendButton actionPerformed userSend
abortButton actionPerformed userCancel
freqComboBox select userSelectValue

Fig. 17. The activation function of the class MefistoMenu

In order to check that this correspondence is valid we have developed a model
checker (part 6 of Figure 19). The properties checked by the model checker cor-
respond to the verification and validation phase in the development process.
Validation phase relates to the question “do we have modelled the right sys-
tem?” while the verification phase address the question “do we have modelled
the system right?”. In the context of ICO-CTT integration for the verification
phase the model checker addresses the following two questions:

a. “are there at least as many user services in the ICO specification as interac-
tion tasks in the CTT model ?”,

b. “are all the possible scenarios from the task model available in the system
modelled ?”.

In the context of ICO-CTT integration for the validation phase the tool addresses
the following two questions:

ObCS Element Feature Rendering method
Place Opened token entered show
Place Closed token entered hide

Fig. 18. Rendering function of the class MefistoMenu



A Tool Suite for Integrating Task and System Models through Scenarios 107

Fig. 19. The framework for CTTE - PetShop integration

a. “are there more user services in the ICO specification than interaction tasks
in the CTT model ?”, and,

b. “are there scenarios available in the system model that are not available in
the task model?”.

If the answer is yes for one of these two sub rules, the system modelled of-
fers more functionalities than expected by the task model described with CTT.
This leads to two possible mistakes in the design process. Either the system
implements more functions that needed or the set of task models built is in-
complete. In the former case the useless functionalities must be removed. In the
latter case either task models using this functionality are added or the use of
this functionality will never appear in any of the scenarios to be built.

The role of the correspondence checker is to notify any inconsistency between
the CTT and the ICO specifications. Future work will be dedicated to provide
recommendations on how to correct these mistakes.

In this part a CTT-ICO correspondence file that stores the mapping between
elements in the task and system models is produced.



108 D. Navarre et al.

Execution: The Scenario Player
As a scenario is a sequence of tasks and as we are able to put a task and a user
service into correspondence, it is now possible to convert the scenarios into a
sequence of firing of transitions in the ICO specification.

An ICO specification can be executed in the ICO environment and behaves
according to the high-level Petri net describing its behaviour. As the CTT sce-
narios can be converted into a sequence of firing of transitions, it can directly
be used to drive the execution of the ICO specification.

To this end we have developed a tool dedicated to the execution of an ICO
formal description of a case study driven by a scenario extracted from a task
model (see Part 7 of Figure 19).

Fig. 20. Association of interactive tasks and user services

5.2 Application on the Case Study

This section presents the application of the integration framework presented in
section 5.1 to the Air Traffic Control case study presented in 4.1.

Figure 20 presents the correspondence editor introduced in previous section
(called The Correspondence Editor). The left-hand side of the window contains
the task model that has been introduced in section 4.2 and loaded into the cor-
respondence editor. In the case study under consideration only one task model
can be loaded. However, if cooperative task models are considered the correspon-
dence editor makes it possible to include several task models. In such a case, the
“Task Tree” panel includes tabs widget for each task model. In this panel the set



A Tool Suite for Integrating Task and System Models through Scenarios 109

of interactive tasks are displayed. On the right-hand side of Figure 20 the panel
“Set of User Services” displays the set of user services in the ICO specification
that has been loaded. Here again it is possible to load several ICOs. The set of
user services of each ICO appears in a separate tab widget.

The lower part of the window in Figure 20 lists the set of associations that
have been created when all the user services loaded in the ICOs have been
associated with all the interactive tasks loaded in the “Task Tree” panel. Then,
the “Launch Scenario Player” button is available.

Clicking on this button opens the window presented in Figure 21 correspond-
ing to the scenario player. This tool allows for loading a scenario (produced using
CTTE tool presented in Figure 4) and executing it in PetShop. The scenario can
thus be used to replace user interactions that would normally drive the execution
of the ICO specification.

Fig. 21. The scenario player

The left-hand side of Figure 21 presents the set of actions in the selected
scenario. The first line in the scenario represents the current task in the scenario.
In Figure 21 the current task is “Select a plane” and is a user tasks i.e. the task
is performed entirely by the user without interacting with the system. Clicking
on the “Perform Task” button triggers the task and next task in the scenario
becomes the current task. Figure 22 shows the scenario player in use. The right-
hand side of the figure shows the execution of the ICOs specification with the
two main components: the Air Traffic Control application with the radar screen
and the ATC simulator allowing for test purpose to add planes in the sector.

Some tasks of interactive or application category require runtime information
to be performed. For instance this is the case of interactive task “Click plane”
that corresponds to the user’s action of clicking on a plane. Of course the click can
only occur on one of the “current” planes in the sector and thus, the identification



110 D. Navarre et al.

Fig. 22. Execution of the scenario of the system

number cannot be known at design time and thus cannot be represented in the
task model.

Fig. 23. Interaction between scenario and current execution: planes IDs are selected
at runtime

Figure 23 provides an example of this aspect. Triggering the action “Click
plane” in the task model requires a parameter i.e. a plane identifier. As this
interactive task has been related to the user service “userAssume” (in the cor-
respondence editor) the triggering of this task starts off the corresponding user
service. However, the triggering of this service requires one of the values in the
input place of the transition userAssume in the ObCS of the class MefistoPlane-
Manager (see Figure 7) i.e. one of the objects planes in the place Planes. In
order to provide those values to the scenario player the set of all the objects in



A Tool Suite for Integrating Task and System Models through Scenarios 111

the place Planes is displayed on the right-hand side of the scenario player (see
Figure 23).

Fig. 24. Interaction between scenario and current execution: values for frequency are
selected at runtime

Figure 24 shows the same interaction occurring while selecting a value for
the frequency. The set of frequencies in the place Frequencies (see Figure 15) is
displayed for user’s selection in the scenario player.

The tool shows a dialogue window when the scenario has been successfully
played on the description of the application using the ICO formalism. A scenario
fails when at some point no action can be performed and the list of actions still
to be performed is not empty.

6 Conclusions

This paper has presented work that has been done in order to bridge the gap
between task modelling and system modelling. The bridge is created by means of
scenarios, which are considered here as sequences of tasks mapped onto sequences
of actions in the system model. The use of scenarios is common practise in the
design of interactive applications. We can thus obtain a design cycle that is
thoroughly supported by dedicated software tools.

The environment proposed for both task modelling and scenarios generation
supports the editing of cooperative tasks, while that for editing and executing
the formal description of system models supports distributed execution of models
according to the CORBA standard. On the system modelling side, further work
is currently under way in order to ease the editing of the presentation part of



112 D. Navarre et al.

the ICO models. Indeed, currently both activation and rendering functions are
edited in a textual way, while graphical editing through direct manipulation
would make this task easier.

Future work will be dedicated to defining formal mappings between the two
notations.

Acknowledgements. The work presented in this paper has been partly funded
by ESPRIT Reactive LTR project #24963, MEFISTO and by FT R&D (for-
merly CNET), the Research Centre of France Telecom, under the SERPICO
project, grant number 98 1B 059.

References

1. Bastide, Rémi, and Palanque, Philippe. “Petri Net Objects for the Design, Val-
idation and Prototyping of User-Driver Interfaces.” In 3rd IFIP Conference on
Human-Computer Interaction, Interact’90, Cambridge, UK, Aug. 1990, 625-31.
North-Holland, 1990.

2. Baumeister L., John B. and Byrne M. “A Comparison of Tools for Building GOMS
Models.” In Proceedings CHI’2000, ACM Press, 2000.

3. Biere, M., Bomsdorf, B., Szwillus G. “Specification and Simulation of Task Models
with VTMB.” In Proceedings CHI’99, Extended Abstracts, pp.1-2, 1999.

4. Bodart F., A-M. Hennebert, Leheureux J-M., I. Provot, and J. Vanderdonckt.
“A Model-Based Approach to Presentation: A Continuum From Task Analysis
to Prototype.” In 1st. EUROGRAPHICS Workshop on Design Specification and
Verification of Interactive System (DSV-IS’94), Bocca di Magra, Italy, 8-10 June
1994.

5. Carroll, John (ed.). “Scenario-based Design.” John Wiley and Sons, 1995.
6. Navarre, D., Palanque, P., Bastide, R., Sy, O. “Specification of Middles Touch
Screen using Interactive Cooperative Objects.” In Working Paper 2.5, MEFISTO
Project: http://giove.cnuce.cnr.it/mefisto/wp2-5.html, (2000)

7. Object Management Group. “The Common Object Request Broker: Architecture
and Specification.” CORBA IIOP 2.2 /98-02-01, Framingham, MA (1998).

8. Palanque, P., Paternò, F., Bastide, R. and Mezzanotte, M. “Towards an Integrated
Proposal for Interactive Systems design based on TLIM and MICO.” In Proceedings
of DSV-IS’96, Springer Verlag 1996.

9. Palanque, Philippe, Rémi Bastide, and Fabio Paternò. “Formal Specification As
a Tool for the Objective Assessment of Safety Critical Interactive Systems.” In
Interact’97, 6th IFIP TC13 Conference on Human-Computer Interaction, Sydney,
Australia, 14 July 1997-18 July 1997, 323-30. Chapman et Hall, 1997.

10. Palanque, Philippe, Rémi Bastide, and Valérie Sengès. “Validating Interactive Sys-
tem Design Through the Verification of Formal Task and System Models.” In 6th
IFIP Conference on Engineering for Human-Computer Interaction, EHCI’95, Garn
Targhee Resort, Wyoming, USA, August 14-18. Chapman et Hall, 1995.

11. Palanque, Philippe, and Rémi Bastide. “Synergistic Modelling of Tasks, Users and
Systems Using Formal Specification Techniques.” In Interacting With Computers
9, no. 2, 129-53, 1997.

12. Paternò, F. “Model-Based Design and Evaluation of Interactive Application.”
Springer Verlag, ISBN 1-85233-155-0, 1999.



A Tool Suite for Integrating Task and System Models through Scenarios 113

13. Paternò, F. “The specification of the ConcurTaskTrees notation.” GUITARE
Working Paper, March 2000.

14. Paternò, F., Santoro, C., Sabbatino, V. “Using Information in Task Models to Sup-
port Design of Interactive Safety-Critical Applications.” In Proceedings AVI’2000,
pp.120-127, ACM Press, May 2000, Palermo, 2000.

15. Paternò, F., Mori, G., Galimberti, R. “CTTE: An Environment for Analysis and
Development of Task Models of Cooperative Applications.” In Proceedings ACM
CHI’01, Vol.2, ACM Press, Seattle, 2001.

16. Puerta, A.R., Eisenstein, J. “Towards a General Computational Framework for
Model-Based Interface Development Systems.” In IUI99: International Conference
on Intelligent User Interfaces, pp.171-178, ACM Press, January 1999.

17. Sy, Ousmane, Bastide, Rémi, Palanque, Philippe, Le, Duc-Hoa, Navarre, David.
“PetShop: a CASE Tool for the Petri Net Based Specification and Prototyping of
CORBA Systems.” In 20th International Conference on Applications and Theory
of Petri Nets, ICATPN’99, Williamsburg, VA, USA. 1999.

18. van Welie M., van der Veer G.C., Eliëns A. “An Ontology for Task World Models.”
In Proceedings DSV-IS’98, pp.57-70, Springer Verlag, 1998.

19. Wilson, S., Johnson, P., Kelly, C., Cunningham, J., and Markopoulos, P. “Beyond
Hacking: a Model Based Approach to User Interface Design.” In HCI’93, Lough-
borough, U.K., 217-31. Cambridge University Press, 1993.


	A Tool Suite for Integrating Task and System Models through Scenarios
	Introduction
	Related Work
	Our Approach
	A Case Study
	Informal Description of the Case Study
	The ConcurTaskTrees Notation and Environment Used in the Case Study
	The ConcurTasktrees Notation
	The ConcurTasktrees Environment (CTTE)

	ICOs and PetShop Used in the Case Study
	ICO formalism
	ICO environment (PetShop)
	Presentation of ICOs and PetShop on the case study


	The Integration of the Models: CTT-ICO Integration
	Integration Framework
	CTT Environment
	ICO Environment
	The Correspondence Editor
	Execution: The Scenario Player

	Application on the Case Study

	Conclusions
	Acknowledgements
	References


