
A Tool for Creating Design Models from Web Site Code
L.Paganelli, F.Paternò

C.N.R., Pisa
Via G.Moruzzi 1

{laila.paganelli, fabio.paterno}@cnuce.cnr.it

ABSTRACT
In this paper we present a method and the related tool for
analysing Web site code in order to automatically
reconstruct the underlying logical interaction design. Such
design is represented through task models that describe
how activities should be performed to reach users’ goals.
The models also include a specification of the objects that
should be manipulated to accomplish such tasks. We also
discuss how the result of this reverse engineering process
can be provided as input to a number of tools for various
purposes (model analysis, usability evaluation, user
interface redesign).

Keywords
Human-Computer Interaction, Reverse Engineering, Web
Applications, Task Models.

INTRODUCTION
Nowadays, creating a Web site takes little effort. There are
many tools that support automatic generation of Web pages
from many possible formats. However, when we navigate
the Web we often encounter problems finding the sought
for information or accomplishing the desired tasks. This
reveals how difficult it still really is to obtain usable Web
sites.
Task models describe how activities should be performed
in order to reach users’ goals. They are the link between
user interface designers and developers as they provide an
abstract description able to highlight important information
for both that can be used to analyse and discuss design
solutions. They can also be used to support usability
evaluation via various techniques (for example, to predict
task performance, to compare predicted use with actual use,
represented by logged sessions).
However, developing task models, as many modelling
activities, can require some effort especially when large
applications are considered. In addition, designers often
have to analyse and evaluate applications developed by
others without any logical representation of the design
choices.
Often, when considering design of user interfaces
researchers have paid attention to top-down approaches,

whereby the designer first thinks about an abstract design
and then moves on to the concrete design and lastly to the
implementation. As already mentioned, in some cases,
particularly Web applications, there is also a need for an
inverse process: starting with an existing application
developed by somebody else, designers have to reconstruct
the underlying design decisions in order to better analyse
them and propose an improved design.
After some preliminary results [9] we are now able to
present a systematic method and the associated tool able to
support the possibilities of bottom-up approaches. This can
be a useful complement to methods and tools able to
support user interface generation from task models.
We also discuss how the result of this reverse engineering
process can be provided as input to a number of tools for
various purposes (model analysis, usability evaluation, user
interface redesign).

RELATED WORKS
So far, little attention has been paid to support the
development of models representing the design of
interactive systems. Some approaches have addressed the
issues related to how to derive such models from informal
material used in the design phase, such as textual
descriptions of scenarios of use. An example in this area is
U-Tel [4], a tool supporting automatic identification of
nouns and verbs that are then used as input for the domain
and the task model, respectively, on the assumption that
nouns indicate the objects that compose the domain model
and verbs the activities considered in the task model. A
similar approach has been pursued in [2], where shallow
natural language parsing is supported to automatically
extract task information from narratives. In our case we
want to address a different issue: how to identify the task
model starting with the Web pages composing the site
considered.
A tool with more similar goals is Critique [6], which aims
to support the development of KLM models [3] from user
session logs. KLM models have a hierarchical description
of sequential activities where the basic elements are the
actions. Such models are also used to predict task
performance on the basis of some cognitive studies that
indicate estimated time to perform the types of actions

considered. The rules for identifying the types of actions
from elements of user interaction logs are straightforward.
Those for chunking the actions in order to identify the
corresponding higher-level task are more elaborate. To this
end, the rules proposed create a new chunk when users
begin working with a new interactive objects or start to
provide a different form of input to the current object (e.g.
switch from clicking to typing in a text box). While this
approach can provide useful information, it seems rather
limited because the resulting model will reflect the actual
use made by the user and moreover has no rule able to
identify general temporal relations among tasks (apart from
sequentiality) and, in any event, does not address the
specific aspects of Web applications.
Vaquita [1] addresses Web applications but is limited to
identifying presentation models for single pages, which
mainly means the abstract description of the interaction
techniques used in the implementation. This tool is
therefore unable to reconstruct the task model associated
with the Web application considered.
Mathaino [11] provides support for reverse engineering of
interaction plans for legacy interface migration. It is
obtained by starting with an analysis of a collection of
traces of the interactions between the system and the user.
The result is a model of the underlying interaction plan that
can be used to drive the redesign of the user interface for a
different platform. In this approach one potential limitation
is that it mainly focuses on sequential activities, whereas in
Web applications often there is the possibility of choosing
from various options to accomplish the tasks.
This review of some of the previous approaches to
supporting reconstruction of relevant models for interactive
systems design highlights the current lack that our work
aims to fill: supporting reconstruction of task models of
existing Web applications.
In the paper we first introduce the method that we have
developed, next we provide a description of the rules that
we have identified and implemented in the associated tool.
Then, we move on to illustrate an example of applications
of the method in order to clarify the approach. Lastly, we
discuss how the resulting models can be used to support
analysis of the current design, potential redesign for other
platforms, and usability evaluation through another tool
that we have developed and provide some concluding
remarks.

THE APPROACH
The purpose of this work is to automatically reconstruct the
task model of the Web application considered. In
particular, we consider task models represented in
ConcurTaskTrees. It is not the purpose of this paper to
describe this notation, which is presented elsewhere [10].
Thus, we will briefly illustrate its features in order to allow

readers unfamiliar with it to follow what is presented here.
In this notation activities are represented in a hierarchical
manner (as is the case for several task model notations). It
uses different icons to represent task allocation (whether a
task should be performed by the system or the user or their
interaction) and has a rich set of temporal relationships that
can be used to describe flexible and dynamic behaviours.
These operators will be introduced during the explanation
of the rules for the reverse engineering transformation. In
addition, the notation has some features such as the
possibility of describing the objects manipulated during
task performance or task attributes (such as frequency, pre-
condition and so on).
The tool (see Figure 1) receives as input the Web pages of
the site. The site can be either in the local system or
remote. The tool is able to automatically identify the pages
composing it. Using the classes provided by Tidy [12] it
first check that the HTML code is well-formed and if not it
corrects it and then creates the corresponding DOM [5]
which describes the structure of the page (all the elements
contained in it). Then, following the rules that we have
developed and are illustrated in the next section it creates
the task model associated with each page. The final part of
the underlying algorithm is dedicated to describe higher-
level tasks that involve multiple pages. The resulting task
model can be saved either in XML format or in a format
that can still be subjected to modifications or adjustments
by the designer using tools available for this purpose.

Figure 1: The structure of the tool.

Site

Task
Model

HTML
Page

Create
DOM

Apply Trasformation
Rules

Task
Model

HTML
Page

Create
DOM

Apply Trasformation
Rules

Task
Model

HTML
Page

Create
DOM

Apply Trasformation
Rules

Task
Model

Composition
Trasformation

Rules

RULES for BUILDING TASK MODELS of
SINGLE PAGES
In this section we describe the rules developed to
reconstruct the underlying task model. We also aimed at
identifying meaningful names for the tasks identified.
In HTML documents we can find many interaction
elements (Links, Buttons, CheckBoxes, Radio Buttons, …)
and elements for their logical grouping (Forms, Fieldsets..).
Our rules analyse all the main elements that can be used in
HTML Web pages and aim to identify the corresponding
tasks, their mutual relationships in order to build the task
model corresponding to the Web site considered.

Creation of initial task structure associated with
a web page
When a new page is considered the tool starts to create a
structure such as that in Figure 2. It represents the typical
interaction pattern that is supported by all Web pages.
There is first the loading of the page, followed by some
interaction that can be interrupted by the selection of a link
to another page. The task name of the root is “Access” +
Title of the page (in case the title is not included we use the
URL to identify the page). The first subtask is a basic
application task (application tasks are represented by the
computer icon), associated with the activity of loading the
page in the browser and the name “Load” + Title of the
page. It is followed by an enabling operator (>> operator)
and an abstract task named “Handle” + Title of the page
(abstract tasks are represented by the cloud icon and
indicate tasks that can be decomposed into more basic
elements).
In particular, this task will be decomposed later on with the
description of the activities that can be performed once the
page has been loaded.

Figure 2: Initial structure of the single page task model.

The second subtask is followed by the disabling operator
([> symbol) indicating that it can be interrupted. In
particular, the disabling activity will be the selection of a
new page. The third subtask is an abstract task named
“Select new page” + Title of the page. This last task will
contain all the tasks associated to selection of links in the

current page leading to other pages, either within or
external to the site.

Creation of task structure associated with links
Once we have created the initial structure of the task model
of a page, the next rules are dedicated to its refinement
according to the actual content of the page. In the analysis
we considered the three possible types of links:

• links to anchors internal to the current page;
• links to other pages still internal to the current

Web site;
• links to pages external to the current Web site.

The links to internal anchors generate tasks that can still be
included as activity related to the current page and thus are
inserted as subtasks of Handle title, whereas the other two
types of links interrupt any activity in the current page and
are inserted as subtasks of Select new page title.

An example of internal anchors is the selection of a link to
the beginning of the same page. Such activity does not
interfere with others that can be performed on the same
page. For example, considering a page containing a form,
it is possible to fill in only some fields, select the internal
anchor to the top of the page and then continue filling in
other elements in the form.
In order to model such a situation, if there are links to
anchors then the node “Handle” + Title of the page is
expanded in the following manner (see Figure 3). The first
subtask is an abstract task followed by a suspend/resume
operator (|> symbol) indicating that the left-hand activity
can be interrupted by the right activity, but when the right
activity is terminated then the first activity can be picked
up from where it was left off. The second subtask is an
abstract task named “Select Anchors” + Title of the page,
which is decomposed in such a way that for each link to an
anchor we have a basic interactive subtask called “Select
Anchor“ + name of internal anchor. The name corresponds
to the name of the tag <A> set for the anchor.

Figure 3: Decomposition for selection of links to internal
anchors.

Also mailto tags, such as <A href=
mailto:fabio.paterno@cnuce.cnr.it>, are associated to
internal tasks. Indeed, when the writing of the email
message is terminated (through an application external to
the web application under consideration) the user will get
back to the activities supported by the page under
consideration. In this case the name of the task associated
with anchor selection is once again defined by “Select
Anchor” + name where the name refers to the mailto
string.

Similarly, there is a decomposition describing selection of
links internal to the current site. For each internal link we
consider two tasks: one representing the actual selection of
a link by a user followed by a task representing all the
possible activities on the target page (see Figure 4). The
first subtask is a basic interactive task named “Select” +
Title followed by the enabling operator. The second
subtask is an abstract task called “Access” + Title of the
page. The last one will be expanded when the task model of
the entire site is built. These tasks are grouped into an
abstract task. The name of the abstract task is given by
“Select link” + Title of the link’s target page. All the
generated subtrees are included as subtasks of the task
named “Select new page” + Title and composed by the
choice operator, which simply indicates that only one link
can be selected before changing pages.

Figure 4: Decomposition for selection of links internal to the

current Web site.

When a page contains at least one link to a page external to
the current site, in the task model an interactive task, called
“Select” External Link, is added as subtask of the node
grouping all the subtasks defined through the previous rule
(“Select new page” + title). This indicates that at this point
the user leaves the site.

Creation of task structure associated with
interaction tasks
When navigating in a web application, link selection is not
the only basic interactive task. A number of other
interaction techniques may be available. In this section we
describe the rules indicating how they are considered in the
reconstruction process.

Each button defined through the tag <INPUT
type=”button”> or through the tag <BUTTON> is
associated with the creation of a selection task in the
model. Submit and reset buttons are considered when the
Form structure is identified.

For each Text or Text area we build a subtree, with
interactive root, composed of two basic interactive subtasks
linked by an enabling operator. The first subtask represents
the text field selection while the second one the actual
writing (see Figure 5). The name attribute of the HTML
element is used to define the task names.

mailto:fabio.patern�@cnuce.cnr.it

Figure 5: Decomposition for Text area elements.

For each set of radio element with the same attribute name,
a basic interactive task named “Select Radio” + name is
created. If the name attribute is not defined then for each
element an interactive task “Select Radio” + value is
added.

For each set of checkboxes with the same name, an
iterative interactive basic task called “Select Checkbox “ +
name is created (Figure 6). An interactive and optional
subtask will be added to this task for each checkbox. Such
checkboxes will be composed through the interleaving
operator, as the order in which the checkboxes are selected
is irrelevant. If the name attribute is not defined, then a
interactive task “Select Checkbox” + value is added for
each element.

Figure 6: Decomposition for Checkbox

Another user interface element is the menu that can be
created through the tag SELECT. For each menu, the
multiple attribute is examined to determine if it is possible
or not a multiple selection.
If the multiple attribute is false then the user interface
element corresponds to a set of radio buttons with the same
name attribute for a mutually exclusive choice and so it is
possible to apply the previous rule.
If the multiple attribute is true then the element
corresponds to the set of checkboxes with the same name.

Identification of the objects associated with the
tasks
By analysing the HTML elements, the tool is able to
identify the objects that each basic task should manipulate
during its performance. Objects are classified as user

interface or application objects. For example, Table 1
shows the objects and the associated attributes that are
identified when a radio button is detected. In this case, one
user interface and one application objects are created.
While the user interface element is static, the application
object can be manipulated. The cardinality attribute of the
user interface object depends on the number of choice
elements.

Table 1 Objects identified when a radio button is detected

Creation of a task hierarchy associated to a
single page
In the model, tasks are structured hierarchically, lower
levels indicate how higher levels can be decomposed. This
logical structure is quite intuitive and reflects the type of
model that often designers have of the activities to support.
HTML provides some techniques to logically group related
user interface elements, for example, the element fieldsets.
To make this logical grouping explicit in the task model, all
the tasks related to elements included in a tag FIELDSET
are grouped as subtasks of a new higher-level task. The
name of the new task is derived from the tag LEGEND.

Figure 7: Example of fieldset.

In HTML forms contain the interactive part of a Web page.
For each form we have a task pattern (see Figure 8) in
which all the tasks related to each of the form’s input
elements or fieldsets are inserted as subtasks of the
Compile Form name task. Non-mandatory fields are
associated with optional tasks. Input elements are
composed by the order independence operator (|=| symbol)
to indicate that they have to be performed but the order of
performance is not predetermined. If the Form contains
both Submit and Reset buttons then the resulting model has
the structure indicated in Figure 8. The task “Send Form” is
an interactive task that represents the selection of the
submit button whereas the actual data transmission is
represented by the application task “Submit”. Likewise the
task “Select Reset” e “Reset Form” are created. If the Reset

Task Name Class Type Access
Mode

Cardinality

Select Radio
name

Name InteractiveRadio Perceivable Access Depends on radio
values number
(<5, 5-15, >15)

Select Radio
name

Radio + name Single-choice Application Modification Single

Task Name Class Type Access
Mode

Cardinality

Select Radio
name

Name InteractiveRadio Perceivable Access Depends on radio
values number
(<5, 5-15, >15)

Select Radio
name

Radio + name Single-choice Application Modification Single

button is missing then the subtree “Reset Form name” will
not be included.

The nesting among Form and Fieldset elements is
reflected in the hierarchical structure of the task model. The
root of these elements is a subtask of the Handle element
created through the first rule explained in this paper. All
the tasks associated with input elements not included in a
form or fieldset are included as subtasks of the Handle
element.

Figure 8: Decomposition for Form elements.

Creation of a new task structure associated with
Frames
A HTML page can contain the definition of various
frames. During the construction of the task model we can
consider that interactions with the various frames can occur
concurrently (||| operator). For example:

<FRAMESET cols="30%,70%">
 <FRAME src="index.html">
 <FRAME src="page.html">
</FRAMESET>

The web pages associated with the frames (index.html and
page.html in the example) will be analaysed as pages of the
site according to the rules described above. Regarding the
page containing the structure of the frames, for each frame
an abstract node “Access” + title of the page referred to the
tag Frame is inserted in the “Handle” + title node. All
these nodes will be composed through the interleaving
operator (see Figure 9) and will be expanded when the
overall structure of the site will be recomposed.

Figure 9: Decomposition for Frames.

CREATION of a TASK STRUCTURE
ASSOCIATED with an ENTIRE SITE
Once we have created the task model associated with the
single pages, then there is the issue of creating the model’s
higher levels describing how the various parts are made up.
As we saw with internal links, the task model of each page
contains an abstract node “Access” + page title to which
the link refers to indicate the activities possible on the new
page.

At this point, starting from the home page the models of the
various single pages are connected to create the model of
the entire site. In this process it is possible to check
whether there are any pages that cannot be reached from
the home page.
A brief example can serve to clarify how the various parts
of the task model can be composed in order to obtain the
entire model. Let us therefore consider two pages that can
be accessed sequentially:

http://giove.cnuce.cnr.it/~fabio/index.html
http://giove.cnuce.cnr.it/ConcurTaskTrees.html

The reverse Engineering tool provides the following result.

Figure 10: Decomposition for Form elements.

http://giove.cnuce.cnr.it/~fabio/index.html
http://giove.cnuce.cnr.it/ConcurTaskTrees.html

The index page contains anchors (Rule 2) and internal and
external links (Rule 3 and 4), whereas the second page has
no internal anchor. The next figure shows the task model of
the two pages. In the part regarding the index page, the
node Handle Fabio Paternò Page has not been expanded
for the sake of brevity. This node contains some internal
anchors and a mailto element.

Figure 11: Task model of /~fabio/index.html

Since it is possible to access the second page from the first,
the task model of the first includes an abstract node Access
CTT Home Page, which is the name of the root of the
second page task model (bottom-right element in Figure
11).

Figure 12: Task model of ConcurTaskTrees.html

The process of constructing the site model starts with the
selected home page, which in our example is the page
index.html, and analyses the links to pages internal to the
site. Then, for each abstract node associated with such
internal links we replace them with the associated task
model.

In our example, the abstract node Access CTT Home in the
first model is replaced with the entire model defined for the
ConcurTaskTrees.html page (the higher levels are shown in
Figure 12) and the final structure is reported below.

Figure 13: The task model of the two pages.

In the event that the second page contains a link to the
home page, then a recursive instantiation of the root of the
general model should be included in its task model
(bottom-right element in Figure 14). Thus, the resulting
structure would be as below.

Figure 14: Decomposition for Form elements.

A particularly important case is the presence of structures
such as a navigation bar common to all the pages. In this
case the subtrees associated with each page are composed
by a choice operator ([] symbol) and by a higher level task
associated with reaccessing the site. Choosing from among
the various pages can be interrupted by the high-level task
(see Figure 15) whose recursion indicates that once a
branch has been selected, it is then still possible to select
any other branch at any time.

Figure 15: Overall structure for the entire site.

In the process of reconstructing the task model of the web
site a number of issues can be detected: links to pages not
existing in the web site considered, pages of the site that
cannot be reached from the home page, pages with links to
themselves.

AN EXAMPLE
In order to illustrate the foregoing rules and their
application let us consider the example of the Web site at
http://giove.cnuce.cnr.it/ctte.html
All pages of the site display a navigation bar that allows
users to reach any part of the site at any time.
The first phase of the reverse engineering process aims to
create the task model associated with each page. For
example, we can consider the page for the download of the
CTTE tool. This page (see Figure 16) contains a form with
some input fields, radio, menu, internal anchors, external
links and internal links in the navigation bar common to all
the pages of the site. Figure 17 shows the sequence of rules
applied during creation of the corresponding task model.

Figure 16:The example considered

Figure 17: Rules applied to create the task model of the
subscription page.

At the beginning the initial structure is created according to
Rule 1. Next, all the links in the page are analysed by
applying rules 2, 3 and 4. Figure 18 shows the task model
created up to this point.
The application of the Rule 2 has determined the creation
of one interactive tasks related a mailto element. The task
Select new page CTTE download contains all the tasks
related to external and internal links (in Figure 18 it has not
been expanded for reason of space).

Figure 18: The initial task model for the example

In the next phase a depth-first visit of the DOM of the page
is performed and the rules for the elements internal to the
page are applied.
Thus, the various subtrees are created as subtasks of the
task Handle CTTE download page. This visit reveals the
presence of a form that requires application of rule 10.
While the analysis considers the part of the DOM
associated with the form, all the tasks obtained through the
application of rule 7, associated with the input elements,
are inserted as subtasks of Compile Form. At the end of the
DOM analysis the task model associated with the form is
that shown in Figure 19.
Once the process of creating the task model associated with
each page is completed, we move on to consider the overall
navigation in the site. Since the site has a navigation bar

that allows the user to access any section from any page,
we can apply the related rule.
The resulting model has a recursive structure that describes
the possibility of accessing any page at any time. It
contains 181 tasks structured into eight levels with 129
basic elements. There are 23 abstract tasks, 142 interaction
task, and 16 application tasks.

APPLICATIONS OF THE TASK MODEL
Once a task model of the web site has been obtained, it can
be used in different ways:

as a logical description of the design to analyse
and discuss with all the stakeholders,
as an input element for usability evaluation. We
have developed another tool, WebRemUSINE,
specifically for such cases.
as the starting point for redesign of the application
for another target platform.

Analysis of the logical description
Once a logical description of the web site considered has
been obtained, it can be used for various types of analysis.
Such analysis can be better performed with the support of
tools, such as CTTE [7], which is freely available at
(http://giove.cnuce.cnr.it/ctte.html). In this analysis some
metrics can be applied to determine the number of tasks
involved, the number of instances of each type of temporal
relations and so on. These quantitative values can be used
to compare different designs, for example two web sites
supporting the same high-level tasks. Another useful
automatic aid is a simulator of the dynamic behaviour: it is
able to show the list of enabled tasks and allows the
designer to select one of them. Then, it calculates what the
next enabled tasks are, according to the temporal relations
specified in the model. This allows the designer to better
understand what tasks are enabled over time according to
the current logical structure of the Web site.

Usability evaluation
The resulting task model can also be useful for usability
evaluation. For example, WebRemUsine [8] combines
empirical testing with model-based evaluation. In addition,
it supports remote evaluation because it does not require
users and evaluators to be at the same place, at the same
time, thus opening up the possibility of analysing a large
number of sessions with users spread over many sites.
In order to conduct the usability evaluation, during a
session all the user interactions are recorded through a Java
script that is automatically included in all the pages making
up the Web site. In addition, the list of tasks supported by
the application is presented to the users so that they can
explicitly indicate what the current target task is. This
information is then used to analyse the user interactions, for
example to detect errors, which are useless actions for
accomplishing the current task.
The automatic analysis can take place after a preparation
phase during which the designer indicates the mappings
between user interactions and the basic tasks in the model
(the leaves of the task hierarchy). This association allows
the tool to use the semantic information contained in the
task model to analyse the traces of actions of the actual use.
More generally, WebRemUSINE provides three types of
information regarding tasks, pages and session simulation.
Information regarding task performance concerns the
performance time, which is indicated for both high-level
and basic tasks through diagrams that also highlight the
minimum, median, mean and maximum values. In addition,
page download times are highlighted in order to distinguish
between the time spent actually visiting and downloading.

Regarding the user session, the tool is also able to take a
user log session and simulate it with respect to the task
model. This means that for each action in the log it
identifies the corresponding basic task and looks at what
happens in the model when that task is performed. If some
precondition is violated, it highlights the error. It is also
able to point out whether the task is useful to accomplish
the target task and indicate what the enabled basic tasks are

Figure 19: The task model associated to the CTTE.

http://giove.cnuce.cnr.it/ctte.html

according to the temporal relationships indicated in the
model. This type of analysis is useful to understand
whether there is a mismatch between the actual use and the
predicted use represented by the task model.
With this type of analysis it is possible to reveal whether
users are able to achieve their goals, if there are parts that
require longer than expected for users to understand, what
types of errors they perform, frequently performed task
sequences (or frequently accessed pages), never performed
tasks or never accessed pages.

Redesign for another target platform
The ever increasing availability of new interaction devices
is transforming the nature of many applications. Such
technology enables nomadic applications, which allow
users to access an application from various different places
through different devices. This also happens for Web
applications. Now, there are many sites specialised for
access through PDAs or mobile phones. However, the set
of tasks that can reasonably be supported by each type of
platforms can be different: a phone allows quick access to
small bits of information, whereas a desktop enables users
to browse detailed information. Thus, another opportunity
provided by our tool is to first create the task model of a
web site dedicated to desktop application, then support its
analysis in order to identify the changes that should be
performed at the logical task level in order to provide
access through another type of platform (such as a PDA or
a mobile phone). The modified task model can then be used
in order to drive the implementation of those parts
dedicated to supporting access through the new target
platform.

CONCLUSIONS
We have presented a method and the related tool
supporting the reconstruction of the task model of existing
Web sites. This allows designers to better understand how
current implementation assumes that tasks should be
performed in order to reach user’s goals.
We also discuss how the result of this reverse engineering
process can be provided as input to a number of tools for
various purposes (model analysis, usability evaluation, user
interface redesign).
The tool is freely downloadable at
http://giove.cnuce.cnr.it/webrevenge.html

REFERENCES
[1] Bouillon, L., Vanderdonckt, J., and Souchon, N. Recovering

Alternative Presentation Models of a Web Page with
VAQUITA, Proceedings of CADUI'02, Valenciennes,
pp.311-322, Kluwer, 2002.

[2] Brasser M., Vander Linden K., Automatically Eliciting Task
Models from Written Task Narratives, Proceedings of
CADUI'02, Valenciennes, pp.83-90, Kluwer, 2002.

[3] Card, S., Moran, T., Newell, A., The Psychology of Human-
Computer Interaction, Lawrence Erlbaum, Hillsdale, 1983.

[4] Chung-Man Tam R., Maulsby D., Puerta A., “U-TEL: A
Tool for Eliciting User Task Models from Domain Expert”,
Proceedings ACM IUI’98, pp.77-80, ACM Press, 1998.

[5] Document Object Model (DOM) Level 1 Specification
(W3C Recommendation) http://www.w3.org/TR/REC-
DOM-Level-1/

[6] Hudson, S., John, B., Knudsen, K., Byrne, M., “A Tool for
Creating Predictive Performance Models from User Interface
Demonstrations”, Proceedings UIST’99, pp.93-102, ACM
Press, 1999.

[7] Mori G., Paternò F., Santoro C., “CTTE: Support for
Developing and Analysing Task Models for Interactive
System Design”, IEEE Transactions on Software
Engineering, pp. 797-813, August 2002 (Vol. 28, No. 8).

[8] Paganelli, L., and Paternò, F. Intelligent Analysis of User
Interactions with Web Applications, Proceedings ACM
IUI’02, pp.111-118, ACM Press, 2002.

[9] L.Paganelli, F. Paternò, Automatic Reconstruction of the
Underlying Interaction Design of Web Applications,
Proceedings Fourteenth International Conference on
Software Engineering and Knowledge Engineering, pp.439-
445, ACM Press, Ischia, July 2002.

[10] Paternò F., Model-based design and evaluation of interactive
applications, Springer Verlag, 1999. ISBN 1-85233-155-0.

[11] Stroulia E., Kapoor R., Reverse Engineering Interaction
Plans for Legacy Interface Migration, Proceedings CADUI
2002, Kluwer Academics pp.295-310.

[12] Tidy http://www.w3. /People/Raggett/tidy/

http://www.w3.org/TR/REC-DOM-Level-1/
http://www.w3.org/TR/REC-DOM-Level-1/

