
Applying Information Visualization Techniques to
 Visual Representations of Task Models

Fabio Paternò

ISTI-CNR
Via G.Moruzzi 1, Pisa, Italy

fabio.paterno@isti.cnr.t

Enrico Zini
University of Bologna

Bologna, Italy
zinie@cs.unibo.it

ABSTRACT
This paper shows how information visualization

techniques can be used to improve the effectiveness of
task model representations. In particular, we discuss
how fisheye and semantic-zoom representations have
been used to improve the effectiveness of the
ConcurTaskTrees notation. The approach can also be
useful for improving other visual modelling languages.
We also report on a first evaluation of the proposed
representations.

Author Keywords
Task model representations, information visualization,
fisheye, semantic zoom, ConcurTaskTrees.
ACM Classification Keywords
H5.m. Information interfaces and presentation (e.g.,
HCI).

INTRODUCTION
Nowadays, visual modelling is widely adopted in a
variety of contexts. The set of notations provided by
UML [8] represents the most evident case, but visual
representations of many types of models are widely
used. However, we are still far from visual
representations that are easy to develop, analyse and
modify, especially when large case studies are
considered. As soon as the visual model increases in
complexity, designers have to interact with many
graphical symbols connected in various ways and have
difficulties in analysing the specification and
understanding the relations among the various parts.
In the human-computer interaction area one of the
most recognised modelling activities is task modelling.
Task models play an important role because they

represent the logical activities that should support
users in reaching their goals. Thus, knowing the tasks
necessary to goal attainment is fundamental to the
design process.
The need for modelling is most acutely felt when the
design aims to support system implementation as well.
If we gave developers only informal representations
(such as scenarios or paper mock-ups), they would
have to make many design decisions on their own,
likely without the necessary background, to obtain a
complete interactive system.

Task models describe the set of tasks supported by an
interactive system and their relationships. Numerous
task model formalisms and methodologies have been
developed. However, one of the main problems in task
modelling was that it is a time-consuming, sometimes
discouraging process. To overcome such a limitation,
interest has been increasing in the use of tool support.
Engineered tool support in order to ease the
development and analysis of task models and make
them acceptable to a large number of designers has
started to appear [7].

One issue is how to represent such models. Many
proposals have been put forward to represent task
models. Hierarchical task analysis [11] has a long
history and is still sometimes used. The concept of
hierarchical decomposition of activities to describe has
shown to be successful because it allows designers to
consider the various possible abstraction levels while
still maintaining a clear indication of the relationships
among them. However, just representing graphically
the hierarchical structure may not be enough to obtain
representations easy to analyse, especially when the
specification becomes large.
The goal of this work is to investigate how information
visualization techniques (such as semantic zooming
and fisheyes [3]) can be tailored and applied to
improve the effectiveness of the task model
representations and associated environments,
providing different interactive representations
depending on the abstraction level of interest, or the

aspects that designers want to analyse or the type of
issues that they want to uncover.
In the paper we first discuss related work, and we
recall the main characteristics of the ConcurTaskTrees
(CTT) notation and the associated environment for the
readers who are not familiar with them. Then, we
discuss the method followed to redesign the notation
and the associated tool and present the new
representation and the possible ways to interact with it.
The final part is dedicated to reporting on a first
evaluation of the new environment and providing some
concluding remarks and indications for future work.

RELATED WORK
Many proposals have been put forward to represent
task models. Hierarchical task analysis has a long
history and is still sometimes used. More generally,
such notations can vary according to various
dimensions:
• syntax (textual vs graphical), there are notations

that are mainly textual, such as UAN [6] where
there is a textual composition of tasks enriched
with tables associated with the basic tasks. GOMS
[1] is mainly textual, even if CPM-GOMS has a
more graphical structure because it has been
enhanced with PERT-charts that highlight the
parallel activities. ConcurTaskTrees [9] and GTA
[12], are mainly graphical representations aimed at
better highlighting the hierarchical structure.

• set of operators for task composition, this is a
point where there are substantial differences
among the proposed notations. UAN and CTT are
those that provide the richest set of temporal
relationships. This allows designers to describe
more flexible ways to perform tasks.

• level of formality, in some cases notations have
been proposed without paying sufficient attention
to define the meaning of the operators. The effect
is that sometimes when task models are created, it
is unclear what is actually being described. This is
because the meaning of many instances of such
composition operators is unclear.

If we consider visual representations of task models, it
is possible to note that they often share the idea of
providing a hierarchical representation. The main
differences are in how such hierarchy is represented,
how task names and associated operators can be
composed and represented. For example, in
ConcurTaskTrees the hierarchical structure is
represented from top to down whereas in GTA it is
from left to right. None of the proposals attempts to
address issues related to when the specifications
become large and the overall model does not fit well in
a window or a screen. ConcurTaskTrees also

associates an icon to each task to indicate its
performance allocation. In Opta [13] the internal nodes
of the hierarchical structure are associated with
temporal operators instead of tasks.

THE STARTING POINT: CONCURTASKTREES AND
THE CTTE TOOL
ConcurTaskTrees is a notation that focuses on
activities. It allows designers to concentrate on the
activities that users aim to perform, that are the most
relevant aspects when designing interactive
applications that encompass both user and system-
related aspects. This approach allows designers to
avoid low-level implementation details that at the
design stage would only obscure the decisions to take.
It has a hierarchical structure (see an example in Figure
1) because a hierarchical structure is something very
intuitive, in fact often when people have to solve a
problem they tend to decompose it into smaller
problems still maintaining the relationships among the
various parts of the solution. The hierarchical structure
of this specification has two advantages: it provides a
wide range of granularity allowing large and small task
structures to be reused, it enables reusable task
structures to be defined at both low and high semantic
level.
A rich set of possible temporal relationships between
the tasks can be defined. This set provides more
possibilities than those offered by concurrent
notations, such as LOTOS. This sort of aspect is
usually implicit, expressed informally in the output of
task analysis. Making the analyst use these operators is
a substantial change to normal practice. The reason for
this innovation is that after an informal task analysis
we want designers to express clearly the logical
temporal relationships. This is because such ordering
should be taken into account in the user interface
implementation to allow the user to perform at any
time the tasks that should be enabled from a semantic
point of view.
How the performance of the task is allocated is
indicated by the related category and it is explicitly
represented by using icons.

Figure 1: An example of task model in ConcurTaskTrees.

Once the tasks are identified it is important to indicate
the objects that have to be manipulated to support their
performance. Two broad types of objects can be
considered: the user interface objects and the
application domain objects. Multiple user interface
objects can be associated to a domain objects (for
example, temperature can be represented by a bar-chart
of a textual value).
For each single task it is possible to directly specify a
number of attributes and related information. There is
one section on general information. It includes the
identifier and extended name of the task, its category
and type, frequency of use, some informal annotation
that the designer may want to store, indication of
possible preconditions and whether it is an iterative,
optional or connection task. While the category of a
task indicates the allocation of its performance, the
type of a task allows designers to group tasks
depending on their semantics. Each category has its
own types of tasks. In the interaction category
examples of task types are: selection (the task allows
the user to select some information); control (the task
allows the user to trigger a control event that can
activate a functionality); editing (the task allows the
user to enter a value); monitoring; responding to alerts.
This classification is useful to drive the choice of the
most suitable interaction or presentation techniques to
support the task performance. Frequency of use is
another useful type of information because the
interaction techniques associated with more frequent
tasks need to be better highlighted to obtain an
efficient user interface. The platform attribute
(desktop, PDA, cellular, …) allows the designer to
indicate for what type of devices the task is suitable.
This information is particularly useful in the design of
nomadic applications (applications that can be
accessed through multiple types of platforms). For
each task, it is possible to indicate the objects (name
and class) that have to be manipulated to perform it.
Since the performance of the same task in different
platforms can require the manipulation of different sets
of objects, it is possible to indicate for each platform
what objects should be considered. In multi-user
applications different users may have different access
rights.
The notation is supported by a tool, the
ConcurTaskTrees Environment [7], which supports
editing, analysis, and interactive simulations of the
dynamic performance of sequence of tasks. As you can
see in Figure 2 a small overview window is also
provided on the top-right part to help in the analysis
when large models are created and a general zooming
facility is provided but there is no other technique
applied able to support the adaptation of the
presentation to the current focus of interest taking into

account the structure of the visual specification. For
this reason a new study has been carried out to identify
innovative solutions for presenting visual models.

Figure 2: The user interface of the CTTE tool.

IDENTIFICATION OF REQUIREMENTS FOR THE
NEW REPRESENTATION
The improvement proposal for the representation has
been set up using a wide number of investigation
methods, to take into account the many variables
involved, being users, the notation structure itself and
the tasks users perform with the notation. Since
ConcurTaskTrees is a notation that has been adopted
for a long time already, the investigation phase was
also a good opportunity to collect the various pieces of
feedback gathered in the past.

The first step in the investigation was to identify the
user base working with ConcurTaskTrees and the
CTTE environment. This was accomplished partly by
interviewing people working in the research group that
developed them and partly by analysing a web form
people need to fill in before downloading the CTTE
tool. The result was that users of CTTE are people
doing user interface design, both in academic and in
industrial environments.

The second step was to assess the goals of users in the
identified target user base. To do this, a survey was
compiled and sent via e-mail to many different user
groups, and the results qualitatively analysed to
pinpoint personal, job and practical goals. Beyond
shedding light on users' goals, the survey has also
provided a good source of information on performed
tasks and frustrating aspects of the current interface.

Three major goals have been identified:
• Editing the model, a practical goal which is a

needed pre-requisite for the other goals
• Analysing the model, a personal goal: once the

model has been created, it is very useful to be able
to use the tool to analyse data about it, explore it,
understand it and making it "live" through the
interactive simulator;

• Making a presentation of the model, a job goal:
once the model has been studied, it is important to
present the result of the study, including a
representation of the model itself and the results of
the investigation.

The resulting user and goal profile has then been used
as a frame of reference to filter past feedback. All
available sources have been scrutinized and relevant
items have been extracted and collected, notably a
user-centered evaluation, a Cognitive Dimensions [5]
evaluation [2] and an Isometrics-based general
evaluation of the CTTE tool and its included
ConcurTaskTrees notation. The result of this work was
a valuable collection of feedback, effectively sorted
into areas of relevance to user needs. The last step in
preparing the design of the new representation has then
been to run two experiments to investigate how the
current representation is perceived and the importance
of its various parts.
The first experiment has been a "navigation test" we
expressly designed for this purpose [14], which has
been very effective in identifying the perceived
importance of various aspects of the structure of the
notation. The experiment involved using a photo-
editing program to cover a ConcurTaskTrees model
with an opaque layer, and then asking the subjects to
use the "rubber eraser" tool in the opaque layer to
uncover the model as they explored it (see Figure 3).
The order in which elements were uncovered, as well
as the elements that have not been uncovered, gave an
interesting outline on the importance for the users of
the various items and relationships among them. This
method has proven to be an effective, cheap alternative
to using sophisticated eye-tracking devices.

Figure 3: Example of final output of interactive
uncovering.

The “navigation test” has shown that there is an
important relationship between a task and the complete
list of tasks in which it is decomposed. This relation is
not always clearly provided in the original
representation, and a possible improvement can be
always keeping sibling tasks grouped and strongly
connected with their parent task. Another finding is
that the arcs joining a task with its children are not all
needed, and could be removed to reduce visual clutter.
The second experiment has been a traditional "card
sorting" experiment that identified a ranking among
the perceived importance of the various pieces of
information that can be provided in a
ConcurTaskTrees model.
This rich body of data collected was finally enough to
drive the design and evaluation of the new
representation.

THE NEW PROPOSED REPRESENTATION
The resulting interface consists of different editing
environments targeting the main user goals identified.
The main environment is the Modelling Tool, for
editing and analysing the structure. Two other editors
are also provided: the Details Editor, for editing data
and the Layout Editor, for modifying the layout to
produce a pleasing presentation of the structure.

The Modelling Tools
The main result of the redesign has been the Model
Editor, which introduces a novel approach to editing a
hierarchical representation: the hierarchy can be edited
with an agile interaction metaphor, featuring a text
caret that can be moved around the representation and
used to insert, cut, paste and rename tasks and task
hierarchies.
The Model Editor also uses a completely automatic
tree layout that allows editing the model structure
without needing to manually control the placement of
the various items on the screen.
One of the thorniest problems of the old notation was
that big models consisting of many levels of task
decompositions would require a great amount of space
to be laid out, well beyond the capacity of a computer
screen, making working with large models
cumbersome and even largest ones totally unfeasible.
The redesign has addressed this issue by introducing
three changes in the representations:
• Task labels are now word-wrapped, to reduce

horizontal requirement of space, which most
impacted tree growth;

• All the tasks involved in a task decomposition are
grouped together, as suggested by the "navigation
test". This avoids dispersing the elements in
which a task is decomposed, as the task expression

as a whole has been found to be the main mean of
understanding the decomposed task;

• The introduction of a multi-layer "fisheye view"
within the task tree ultimately allows editing
arbitrarily large trees, by working on a portion of
the model while still keeping the perception of the
whole tree structure.

Other simple techniques have been followed to further
improve the tree comprehensibility:
• the set of arcs emanating from a task to all its

decomposing tasks, deemed unnecessary in the
"navigation test", has been replaced by a single
arc, which divides into a set of arcs only at the
very end to keep the decomposition metaphor.
This reduces the amount of items on screen, both
removing unneeded visual noise and reducing
cognitive load.

• greyed parenthesis are used to explicitly mark
when the operator precedence makes the order of
evaluation of temporal operators not flowing
naturally from left to right. This eases the hard
cognitive problem of remembering operator
precedence with the eight different temporal
operators to be able to assert the behaviour of a
task.

Icons have been redesigned for clearness using a set of
requirements we designed:
• symbols must be immediately understandable, as

one of the goals of the notation is to be
communicative;

• symbols must be such that they are easily
recognised in black and white, so that they can be
reproduced via monochrome printing or drawing
using pencil and paper;

• symbols must be quick and easy to draw by hand;
• symbols should use existing graphic signs, to

allow existing social conventions to be reused in
their decoding;

• symbols must use the least possible number of
different graphical signs, to avoid high cognitive
load in their decoding;

• symbols must be similar, but different: similar in
order to recognize them as part of a homogeneous
group, and different to avoid confusing them with
each other.

While all these improvements are a key part in making
the notation more effective, the fisheye view is the
ultimate step in making large trees comfortably
workable.
The original idea of fisheye [3] is based on defining
three functions over the viewable elements of the
notation:
• "Level of Detail" (LOD(x)) defines the degree of

generality/specificity of the element, increasing as
the element describes a more specific part of the
whole

• "Distance from focus" (d(x)) defines the distance
from an element x to the element which is the
current centre of focus

• "Degree of Interest" (DOI(x)), computed as
DOI(x)=h(f(LOD(x))+g(d(x))), where f, g and h
are monotonically increasing functions; it defines
a measure of how "interesting" the current element
is, considering the focus of the user’s attention to
be centred in a specific place.

Once the DOI function is defined, the original fisheye
view algorithm works by simply showing those
elements whose DOI values are greater than a given
threshold value t.

In a task tree, the function d(x) can be defined as the
“walking distance”, or shortest path, between the
centre of the focus and the node x. The current fisheye
implementation in CTTE has shown to give good
results with a simple definition of DOI as DOI(x)=-
d(x). Furthermore, the fisheye algorithm has been
improved by introducing an intermediate level between
full show and pruning, and by representing the pruned
tree structure (using a semantic zooming technique)
instead of totally hiding all the pruned trees.

The resulting algorithm is as follows:
• the centre of the focus is represented by the node

at the caret;
• nodes with a high DOI value (DOI(x)>t) are

represented in full size;
• nodes with a DOI value equal to the threshold

value (DOI(x)=t), are represented in a smaller
size;

• all the other nodes are replaced by a small outline
of their tree structure (no node is left out).

Figure 4 shows how the task model represented in the
traditional CTT representation in Figure 1 can be
displayed using the new extension that supports
fisheye representations. In this case the focus is on the
New Number task. It is possible to see that the part of
the hierarchical structure that involves such task is
highlighted, whereas the more remote parts are

represented in small sizes. In some cases the names are
not reported at all. In the bottom-right part there is also
a small overview window that indicates through red
dots the tasks that are currently highlighted in the
fisheye representation. In the bottom left part, some
details regarding the current task focus are given as
well.

Figure 4: An example of fisheye applied to the task model representation.

While the cursor is moving around the tree, the fisheye
is continuously recomputed to move the focus centre
on the new position, and both the tree structure in the
overview and the tree structure of the pruned branches
in the representation can be clicked to bring nodes to
the centre of focus. This gives the impression of a
completely perceivable and easy-to-manipulate model
independent of its size and current focus.
This approach has also been applied to the rendering
provided by the CTTE simulator. This is a useful
feature to analyse the dynamic behaviour represented
by the task model. The tool allows the designer to
select a task and then shows the enabled tasks after its
performance according to the temporal relations
defined in the model. This also allows designers to
interactively identify potential scenarios supported by
the current task model. In the new interface for the
simulator two windows are presented: one small one
showing the overall model and the list of enabled tasks
(the user can select one of them to carry on the

interactive simulation) and a large one applying the
fisheye representation with multiple foci (Figure 5).

Figure 5: The fisheye approach applied to simulator
output.

Brackets to
indicate priorities

Word
wrap

Grouping of
sub-tasks

Compact arcs

New Icons

Semantic
zoom

New
overview

Detail

Focus center

Second level
Fisheye

Brackets to
indicate priorities

Word
wrap

Grouping of
sub-tasks

Compact arcs

New Icons

Semantic
zoom

New
overview

Detail

Focus center

Second level
Fisheye

Word
wrap

Grouping of
sub-tasks

Compact arcs

New Icons

Semantic
zoom

New
overview

Detail

Focus center

Second level
Fisheye

Word
wrap

Grouping of
sub-tasks

Compact arcs

New Icons

Semantic
zoom

New
overview

Detail

Focus center

Second level
Fisheye

The fisheye implementation provided in the task model
simulator is different and benefits from a distinct
strategy: when the simulator is operative, the fisheye
algorithm considers every expression containing
enabled tasks as a focus center, and all the other
expressions are hidden and replaced with a sketch of
the subtrees that contain them. This allows designers to
keep a clear idea of the simulator state, reducing the
encumbrance of the parts of the task tree that are not
currently relevant.

The Details Editor
The second metaphor provided for model editing is the
Details Editor, which allows designers to work with
the task details without being encumbered with the
model structure. The Details Editor (see Figure 6)
offers the metaphor of a spreadsheet, with one task per
row, which allows designers to have a full view over
the entire task data set.

This view provides "visibility" [5] to a big amount of
data that was previously hard to access except on a
task-by-task basis, and opens new possibilities of
exploration of the task data as a whole: sorting the
columns, for example, can be used to highlight
relationships and trends among the data, as one would
normally do with familiar table views.

Figure 6: The details editor.

The Layout Editor
The third editing metaphor is the Layout Editor (see
Figure 7), which allows designers to control the final
tree layout and design before publishing, using the
interaction pattern of a vector graphics tool.

While the Layout Editor is not a required element for
modelling and analysis, presenting the results has been
identified as an important user goal during the initial
investigation phase. This understanding allowed us to
decide to gather former CTTE manual layout
functionalities instead of removing them, and organize
them into a separate, specific environment, ready to be
evolved and integrated to form a powerful and focused
accessory to the modelling tool.
Although more research and development is needed on
the Layout Editor, it seems a good candidate as the
starting point for adding communication aids such as
colour highlighting, arrows and annotations to task
models.

Figure 7: The layout editor.

EVALUATION OF THE REPRESENTATION
After the implementation of the designed
improvements reached the level of a working
prototype, we went on to a first evaluation of the
effectiveness of the modifications made. The
evaluation involved eight young computer science
researchers whose characteristics conformed quite well
to the prototype user we had identified initially.
The evaluation consisted of a 20-minute modelling
exercise, followed by a feedback survey. The
modelling task requested involved a familiar domain to
allow the subjects to focus on interacting with the tool
instead of solving complex modelling issues. The only
training provided was a one-page sketch introduction
to the new modelling interface. During the exercise, a
moderator (the second author) was available to answer
volunteers’ questions, taking notes of the issues raised.

The evaluation gave positive, encouraging results:
• Most of the times the facilitator has been called

during the exercise was to report implementation
bugs, but there have been no major issues with
understanding the new interface;

• 6 over 8 volunteers continued playing with the
new interface even after the allocated 20 minutes
expired, showing how the prototype gathered
considerable interest;

• Besides some reserve and reports of difficulties
and possible improvements, the first impression
given on the survey was unanimously positive;

• When asked what were the most interesting and
what were the most useful features, most of the
answers indicated the new representation even if
other major and long-requested improvements
such as multi-document editing and full unlimited
undo also appeared in the new CTTE;

• Even though no question has been made in the
survey about the efficiency of editing, when asked
what old problems are solved by the new
interface, 5 over 8 volunteers reported a clearer,
faster, more functional or more immediate editing;

• When asked about frustrating aspects of the new
interface, most of them regarded implementation
bugs or yet unimplemented editing features, which
were naturally present due to the tool being in a
prototype phase. It is very encouraging that
frustrating aspects have mainly regarded the
impossibility of fully use the new interface instead
of problems potentially introduced by the new
way of interaction;

• 6 over 8 volunteers declared they would keep
using the new interface;

• 6 over 8 volunteers declared they would suggest
the new interface to experienced CTTE users;

• 7 over 8 volunteers declared they would suggest
the new interface to new CTTE users.

This first evaluation exercise mainly aimed to
understand whether the new environment can satisfy
designers. A more extended testing is required to better
evaluate various usability aspects.

CONCLUSIONS
We have presented an original solution for applying
information visualization techniques to representing
and manipulating task models and thereby improve
their effectiveness. This solution has been applied to
the ConcurTaskTrees notation for task models. A tool
supporting the editing and analysis of models in this
new representation has been developed as well. The
results of a first evaluation carried out with a number
of user interface designers and developers have been
positive.

To our knowledge, no other solution using similar
techniques has ever been applied to any task model
representation. The techniques proposed may also be
interesting for other visual modelling notations, such
as those used in the UML approach.
Future work will be dedicated to more extensive
usability testing and investigating the application and
tailoring of other information visualization techniques
to task models.

REFERENCES
1. Card, S., Moran, T., Newell, A., The Psychology of

Human-Computer Interaction, Lawrence Erlbaum,
Hillsdale, 1983.

2. Fairburn, C., Goillau, P., Wright P., CTT Notation
Evaluation, MEFISTO Working Paper N.4-9.

3. Furnas, G. (1981). The FISHEYE view: A new look at
structured files, technical Memorandum #81-11221-9,
Bell Laboratories, Murray Hill, New Jersey 07974,
USA, 12 October 1981.

4. Gamboa Rodriguez F., Scapin D., Editing MAD* Task
Description for Specifying User Interfaces at both
Semantic and Presentation Levels, Proceedings DSV-
IS’97, pp.193-208, Springer Verlag

5. Green T.R.G., Petre M.; Usability analysis of visual
programming environments: a 'cognitive dimensions'
framework, in J. Visual Languages and Computing,
Vol.7, N.2, pp.131-174, 1996.

6. Hartson R., Gray P., “Temporal Aspects of Tasks in the
User Action Notation”, Human Computer Interaction,
Vol.7, pp.1-45, 1992.

7. Mori, G., Paternò, F., Santoro, C. (2002). CTTE:
Support for Developing and Analyzing Task Models for
Interactive System Design. IEEE Transactions on
Software Engineering, pp. 797-813, August 2002 (Vol.
28, No. 8).

8. OMG Unified Modeling Language Specification;
available at http://www.omg.org/technology/
documents/formal/uml.htm

9. Paternò, F., Model-Based Design and Evaluation of
Interactive Application. Springer Verlag, ISBN 1-
85233-155-0, 1999.

10. Paternò, F. (2003), ConcurTaskTrees: an engineering
notation for task models. In Dan Diaper & Neville A.
Stanton (Eds.) The Handbook of Task Analysis for
Human Computer Interaction. London: Lawrence
Erlbaum Associates,483-503.

11. Sheperd (1989), Analysis and Training in Information
Technology Tasks, in D.Diaper (ed.), Task Analysis for
Human-Computer Interaction, chapter 1, pp.15-55, Ellis
Horwood, Chichester, 1989.

12. van Welie M., van der Veer G.C., Eliëns A., “An
Ontology for Task World Models”, Proceedings DSV-
IS’98, pp.57-70, Springer Verlag, 1998.

13. Violante F., “OPTA: Open Task Analysis”, Ph.D.
Thesis, Politecnico di Milano, Dipartimento di
Elettronica e Informazione, 2001

14. Zini E. (2004), Ricerca e prototipazione di
rappresentazioni efficacy per la modellizzazione
visuale: il caso di ConcurTaskTrees Environment.
Master Thesis. University of Bologna, 2004.

