
Dynamic Generation of Web Migratory Interfaces

 Renata Bandelloni, Giulio Mori, Fabio Paternò

 ISTI-CNR

Via G.Moruzzi 1, 56124, Pisa, Italy

ABSTRACT
In this paper, we present a solution for dynamic generation of
Web user interfaces that can dynamically migrate among different
platforms. The solution is based on a migration/proxy server able
to automatically convert a desktop service into a service
accessible from a different platform, such as a mobile one. This
solution can support new environments where users can freely
move about and change interaction device while still continuing
task performance and accessing the application in a usable
manner.

Categories and Subject Descriptors
H.5 INFORMATION INTERFACES AND PRESENTATION –
I2.2 Automatic Programming: Program Transformation.

General Terms
Design, Human Factors, Languages.

Keywords
Migratory Interfaces, Ubiquitous environments, Model-based
design, Automatic transformations.

1. INTRODUCTION
Recent technological evolution is characterized by the increasing
availability of a wide variety of interaction devices, in particular
to support the mobile user. This poses a number of challenges to
designers and developers of interactive services that can be
accessed through various devices. Developing a version for each
type of platform separately can be very expensive in terms of time
and can also generate inconsistent results. Style sheets can
provide some support by rendering the same element in different
manners according to the type of platform but they are still limited
since they cannot change the structure of the interface, which is
sometimes necessary to better take into account the features of the
device at hand.

One more general solution can be obtained with the use of logical
descriptions able to indicate the tasks that the system aims to

support and the type of communication effects that should be
achieved. This type of description can then be analysed to
generate the corresponding user interface according to design
criteria specific for the target platform. By platform we mean a set
of devices that share similar interaction resources, such as the
desktop, the PDA, the vocal interface. To further complicate the
issue we have to take into account that sometimes the user would
like to change device and carry on the task started with the
previous one. This issue has stimulated a good deal of attention to
migratory interfaces, which are interfaces that can transfer among
different devices, allowing the users to continue their task. They
are useful in environments where people can move, change
context, while still continuing their activities. For example, the
user can be playing at home with a desktop system, then realises
that it is getting late and has to leave but still wants to continue
the game. Thus, he takes a PDA and interacts with it until he
reaches the car where the game is finished through a vocal
interface while driving. Supporting similar scenarios implies
having an infrastructure able to detect requests for migration,
identify possible new target devices and therein activate an
interface able to adapt to their features, still maintaining the state
resulting from the user interactions performed in the first device.

In Aura [7] the solution proposed is mainly to change applications
supporting the same service through different devices. Thus, for
example, if users have to edit text and have a PC, then they can
use MS-Word, whereas if they have a mobile phone then they can
use a NotePad-like application, because it requires less resources
for execution and interaction. We aim to provide a more flexible
solution where the user can still access the same application
through different devices but with user interfaces able to adapt to
the interaction resources at hand.

Dygimes [6] is another approach proposed for dynamically
generating multi-device user interfaces. The authors use an
annotated version of the task level logical description. In Dygimes
migratory interfaces were not addressed. The same group
proposed in [5] a solution based on logical descriptions for
supporting distributed user interfaces. Migratory interfaces are
different from distributed user interfaces, where the interface runs
in one device and is allocated to multiple interaction resources
connected to that device (for example two screens). In dynamic
distributed user interfaces the allocation of the user interface parts
to the interaction resources is dynamic (for example, moving one
window from one screen to another or changing from graphical to
vocal modality) but they are not migratory interfaces because the
interface is always executed in the same device.

CAMELEON-RT [1] is a proposed general reference model to be
compliant with when designing a user interface aiming to support
migration, distribution and adaptvity to the platform (termed

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MobileHCI’05, September 19–22, 2005, Salzburg, Austria.
Copyright 2005 ACM 1-59593-089-2/05/0009...$5.00.

83

plasticity in their article). In our work we propose a concrete
architecture focused on supporting migration based on a
client/server infrastructure. In addition, we can support migration
of user interfaces associated with applications hosted by different
servers thanks to the proxy capability of our system.

Different techniques for redesigning Web applications for small
devices have been proposed in [4] and [8], both oriented to obtain
a thumbnailed view of the original page. These approaches are
mainly based on the layout analysis of the page and the small
screen pages accessed through the thumbnails are built by
extracting parts from the original page. Besides the layout, we
also consider redesigning the task support, and we change the
associated implementing interaction objects in the newly
generated page by selecting those best suited for presentation in
the small device.

A solution for supporting migratory interfaces was presented in
[2]. While that solution contains various interesting elements it
has a strong limitation: it uses pre-computed interfaces developed
with a specific tool, TERESA [9]. This tool works in a top-down
manner. It starts with logical descriptions and then generates the
corresponding user interfaces. At run-time the state resulting from
the previous user interactions with the source device is adapted to
the new user interfaces and associated with it. The system also
identifies the point in which the user interface should be activated
in the target device. Since TERESA is only a research tool,
requiring its use poses a severe limitation to this approach.

In this paper, we present a new solution, which overcomes such
limitations. Indeed, in this solution we only require that a desktop
version of an interactive service exist. It does not matter how it
has been developed or which authoring environment has been
used for this purpose. Thus, when a request to migrate to one
platform different from the desktop arrives, it automatically
generates a new user interface version for the new device
associating the current state resulting from the user interactions to
it. This is obtained by first performing a reverse engineering
transformation able to reconstruct the logical description
underlying the current desktop version, and then applying a
semantic redesign transformation able to generate a version for the
target platform taking into account the tasks to support and the
features of the platform. The first version of our migratory server
works with desktop Web applications and dynamically generates
the possible versions for various types of mobile devices.

In the paper we first discuss the architecture of our migration
environment, next we discuss the rules that we have designed for
reverse engineering the logical description of the user interface
and those for performing semantic redesign. Then, we show an
example application of our tool. Lastly, some conclusions and
indications for future work are provided.

2. THE ARCHITECTURE OF THE
MIGRATION ENVIRONMENT
We have designed an architecture able to support migratory
interfaces based on a migration/proxy server. The architecture
works currently for Web applications but can be generalised with
little effort to other implementation environments.

One basic assumption is that the desktop version for the
application has been developed but access from various platforms

can occur. This solution seems reasonable because the majority of
existing applications have been designed with this type of
platform in mind. This also implies that we have available content
for the most powerful platform, which can be transformed or
minimised for the other platforms.

The client devices that want to access the service, first have to
load the migration client. This will allow the server to identify
them and recognise their platform, and will enable the devices to
issue migration requests. The migration/proxy server behaviour
can be described analysing three basic situations:

• The device used to access the service belongs to the
same platform type for which the pages where created
for (desktop). The migration/proxy server retrieves the
required pages from the Web server and passes them on
to the client.

• The device used to access the service belongs to a
platform different from that for which the pages where
created. As an example we can think of a PDA client
accessing the desktop designed pages. Here the
migration/proxy server retrieves the required page from
the Web server, then the page is redesigned for the PDA
and the result is sent to the client.

• The device accessing the Web is the same platform type
for which the pages where created and at a certain point
migration towards a different platform is required. This
is the most complex and interesting case, in which all
the functionalities of our migration/proxy server are
involved. First, the target device of the migration has to
be identified. In the example in Figure 1 we consider a
desktop to PDA migration. Thus, the page that was
accessed through the source device in the migration is
stored and automatically redesigned for the PDA. This
is enough to support platform adaptation, but there is
still one step to be performed in order to preserve
interaction continuity. The runtime state of the
migrating page must be adapted to the redesigned page.
In addition, the server has to identify the first page to
activate in the target PDA. At the end of the process the
adapted selected page is sent to the PDA from which the
user can continue the activity which was left off on the
desktop.

Figure 1 shows what happens in the scenario of use within the
proposed architecture more in detail. A request for an access to a
desktop page is first sent (1). This goes through the migration and
proxy server (2 ,3, 4). When a request for migration is sent (5) the
server identifies the possible target device based on an analysis of
the currently available device position and features (6). In this
case a PDA has been identified. Thus, the desktop page is
redesigned for the PDA platform (7). For this purpose the server
first performs a reverse engineering able to identify the logical
description of the page, then exploiting this information a
semantic redesign transformation is applied. The result is the
generation of PDA pages corresponding to the desktop page. In
addition, through an analysis of the tasks supported by the source
page, the server is able to identify the PDA page corresponding to
the last task performed on the source device. Another
functionality performed by the server is to take the state resulting
from the user interactions on the source device (such as text

84

entered, elements selected) and to associate it to the pages created
for the PDA platform. In this way the user still has available the
results of the interactions through the previous device. Thus, the
PDA page corresponding to the portion of the desktop page which
was last used on the source device is presented to the PDA (8) and

the user can carry on the task. When a new page is selected then
the process is applied again (following steps 9, 10, 11, 12, 13).
The selected desktop page is transformed in the same manner in
order to be presented to the PDA in such a way as to be suitable to
its interaction resources.

Figure 1: The architecture of the migration environment

3. THE REVERSE ENGINEERING
TRANSFORMATION
This work is based on the assumption that there can be different
logical views on an interactive application:

• The task level, where the logical activities are
considered;

• The abstract interface level, consisting in a modality-
independent description of the user interface;

• The concrete interface level, consisting in a modality-
dependent description of the user interface but
independent of the implementation language;

• The user interface, the actual implemented user
interface.

There have already been proposals aiming to provide some
support for reverse engineering user interfaces. For example,
WebRevEnge [10] automatically builds the task model associated
with a Web application, whereas Vaquita [3] and its evolutions
build the concrete description associated with a Web page. In our
case, we have developed new transformations able to take Web
pages and then provide any of the three possible logical
descriptions (task, abstract interface, concrete interface). In
particular, in order to support the automatic redesign for migration
purposes, we need to reconstruct concrete and abstract description
and the task description.

The information regarding the abstract description is also
integrated in the concrete description. In fact, the concrete
description is a refinement of the abstract description obtained by
adding information regarding concrete attributes to the structure

provided by the abstract description. The abstract description
level represents platform-independent semantics of the user
interface and it is responsible for how interactors are arranged and
composed together (this will also influence the structure of the
final presentations). The concrete description represents platform-
dependent descriptions of the user interface and is responsible for
how interactors and composition operators are implemented in the
chosen platform with their related information content (text,
labels, etc.).

The abstract description is used in the redesign phase in order to
drive the changes in the choice of some interaction object
implementations and their features and rearrange their distribution
into the redesigned pages. Both task and logical interface
descriptions are used in order to find associations between task
support implemented in the original interface and in the
redesigned one and associate the runtime state of the migrating
application.

3.1 From Web Pages to Their Logical
Descriptions

The logical description of the user interface is organised in
presentation(s) interconnected by connection elements.
Presentations are made up of logical descriptions of interaction
objects called interactor elements. The interactor objects can be
combined by composition operators. Connections are defined by
indicating the source and target presentation, and the interactor in
the source presentation triggering the activation of the target
presentation.

The reverse engineering tool takes a whole Web site or single
page designed for a desktop platform and generates the
corresponding logical descriptions. Each page is reversed into a

85

presentation and each interaction object into an interactor.
Interactors are composed by means of composition operators. The
goal of such composition operators is to identify the designers’
communication goals, which determine how the interactor should
be arranged in the presentation. Thus, we have a grouping
operator indicating that there is a set of elements logically
connected to each other, a relation operator indicating that there is
one element controlling another set of elements, a hierarchy
operator indicating that different elements have different
importance for users, and an ordering operator indicating some
ordinal relation (such as a temporal relation) among some
elements.

The reversing algorithm processes the DOM tree of each
page. In order to acquire it, we need to have well formed
X/HTML files. Since many of the pages available on the Web do
not satisfy such requirement, before starting the reversing phase,
each page is parsed using the W3C Tidy parser, which corrects
features, such as missing and mismatching tags, and returns the
DOM tree of the corrected page. Each page is mapped onto a
presentation. The reversing algorithm recursively analyses the
DOM tree of the X/HTML page starting with the body element
and going in depth. For each tag that can be directly mapped onto
an interactor a specific function analyses the corresponding node
and extracts information to generate the proper interactor or
composition operator. In the following table we show how
X/HTML and logical elements are associated. Given that the
semantic distance between the implementation and the logical
user interface description is not great, associations usually provide
meaningful results.

Table 1: Associations used in the reverse engineering process.

X/HTML element Abstract element / operator
Ordered List Ordering

Unordered List Ordering

Table Grouping

Table Row Grouping

Table Data Grouping

Select Selection

Textarea Textfield

Form Relation

Input text Textfield

Input checkbox Selection

Input radio Selection

Input reset Activator

Input submit Activator

Input button Navigator

Div Grouping

Fieldset Grouping

Anchors Navigator

Text Description

Img Description

After the first generation step, the logical description is
optimised by eliminating some unnecessary grouping operators
(mainly groupings composed of one single element) that may
result from the first phase. Then, according to the X/HTML DOM
node analysed by the recursive function, we have three basic
cases:

• The X/HTML element is mapped into a concrete
interactor. This is a recursion endpoint. The appropriate
interactor element is built and inserted into the XML-
based logical description.

• The X/HTML node corresponds to a composition
operator. The proper composition element is built and
the function is called recursively on the X/HTML node
subtrees. The subtree analysis can return both interactor
and interactor composition elements. Whichever they
are, the resulting concrete nodes are appended to the
composition element from which the recursive analysis
started.

• The X/HTML node has no direct mapping to any
concrete element. If the element has no child nodes, no
action is taken and we have a recursion endpoint,
otherwise recursion is applied to the element subtrees
and each child subtree is reversed and the resulting
nodes are collected into a grouping composition.

3.2 From the Logical User Interface to the
Task Model

Each logical presentation can contain both elements that are
the description of single interactor objects and composition
operator elements. The composition operators can contain both
simple interactors and multiple composition operators. Our
reverse engineering transformation builds a task model
represented through the ConcurTaskTrees (CTT) notation [11].
For each presentation a CTT abstraction task node is built, to
which the subtrees obtained by reversing the elements contained
in the presentation are connected through the appropriate
temporal operator.

Each composition operator in the logical user interface is reversed
into an abstract task node, whose children are the tasks obtained
by reversing the elements to which the operator applies. The
reversed children are connected through CTT temporal operators
as shown in Table 2. The relation operator is usually associated
with cases where there is one control element that can trigger
some other activity while disabling other interactions which were
available concurrently.

Table 2: Associations used in logical interface to CTT reverse
engineering.

Composition operator CTT Temporal Operator
Grouping Interleaving

Ordering SequentialEnabling

Hierarchy Interleaving

Relation Interleaving among interaction
elements
Disabling with control element

86

Each interactor is reversed into the corresponding CTT task.

A CTT task element is characterised by its “category” and
“type”. The category indicates how the task performance is
allocated and can take the following values:

• abstraction: for higher level tasks with subtasks
allocated differently. This category of task is associated
with composition operator elements and the overall
access to one presentation.

• interaction: for tasks obtained by reversing interaction
interactor elements.

• application: for tasks obtained by reversing only-output
interactor elements.

Once each single presentation has been reversed, the
corresponding CTT subtrees must be composed to build up the
whole application task model tree. The root node of the model is
an abstraction task representing access to the whole application.
The task sub-models associated with single presentations are
inserted, directly or grouped through a further abstraction task, as
children of the root task. The order in which tasks associated with
each presentation are inserted in the overall model, the temporal
operators connecting them and their possible groupings depend on
the connections among presentations in the user interface logical
description.

4. SEMANTIC REDESIGN
Semantic redesign adapts desktop presentations to the limited
resources of mobile devices. Generally, desktop presentations
must be split into a number of different presentations for the
mobile devices. To avoid division of large pages into small ones
which are not meaningful, this transformation considers both
abstract and concrete descriptions of presentations. The abstract
description (based on semantic of interactors and composition
operators) is important because it identifies the original
communication goals of the designer that should be preserved in
the newly created mobile presentations. Concrete descriptions are
important as well because they allow for assessing how many
interactors can be inserted in a newly created mobile presentation
on the basis of their dimensions in pixels and their
implementation. For example, a single selection can be
represented as a list box in a desktop presentation, but this
(depending also on the number of choices) may not be suitable for
a PDA presentation and so it has to be transformed into a pull
down menu.

Dividing presentations requires a change in the navigation
structure, with the consequent need for additional navigator
interactors. Our transformation works exploiting semantic
information, such as that provided by the composition operators,
which indicate semantic relation among elements that should be
preserved in the target device as well. In particular, the semantic
redesign algorithm follows these main criteria:

• Splitting desktop presentations for mobile devices while
keeping in the same presentations interactors composed
through the same composition operator in order to
maintain semantic relations among interactors as in the
desktop presentations;

• selection of interactors in a mobile presentation by
assessing their screen consumption cost in terms of
required pixels, size of fonts, number of characters for
text, dimensions of images and similar aspects. Cost of
implementation of composition operators are considered
as well. The algorithm inserts interactors into a mobile
presentation until the total cost of individual interactors
and composition operators reaches the maximum global
cost supported in a mobile presentation;

• implementation of interactors may change according to
new mobile devices resources;

• images are resized maintaining their aspect ratio, when
are supported in the target mobile device;

• text is transformed (in case it is too long). Labels are
converted with the help of a synonyms database;

• the algorithm aims to predict important regions of a
desktop presentation in terms of information content.
This issue is addressed considering some attributes
associated to the composition operators identified
during the reverse engineering process. To this end, we
use a database of commonly used Web terms, consider
image file names and analyse page tags. Predicting the
region most likely to contain important content is useful
in order to identify the order in which the mobile
presentations should be made available to the users.

The following rules are applied for creating the new connections:

• original connections of desktop presentations are
associated to mobile presentations containing the
triggering interactor; destination presentation for each
of these connections is the first mobile presentation
obtained after division of the desktop destination
presentation;

• composition operators that are allocated to new mobile
presentations, are substituted in the mobile presentation
that could not contain them by a link to the new
presentation containing the first interactor associated
with the composition operator.

• when interactors of a composition operator cannot be
contained in only one mobile presentation, then they are
distributed in multiple mobile presentations and new
connections are generated to navigate through the new
series of mobile presentations.

To better understand how semantic redesign works we can
consider the example in Figure 2, which shows how a Web page
for desktop is adapted to a PDA through semantic redesign
transformation.

During the reconstruction of the logical description of the current
desktop page, the server (using a database of common used terms
in the Web, considering also image file names and analysing tags)
aims to understand most likely important parts in terms of page
content. Considering the three main groupings of the desktop page
in Figure 2, the server identifies grouping 3 as the most likely
composition operator to contain more important information.

87

In fact, the page part represented by Desc. Title (highlighted with
a dotted line) contains tags such as <h1>, ..,<hn> and an image
file, named “logo”, denoting that this section could be used to
represent the page title. Regions represented by grouping 2 and by
grouping 4 contain respectively many links and many image links
to internal and external Web resources, so we can deduce that
these page parts should not contain important information content

for this Web site, but only navigation elements. The region
represented by grouping 3 is the only page part containing text
interactors, so with a good probability this grouping can be
considered the most important content section of page. This
hypothesis is also supported by the fact that this text contains
some images named “new”, thus indicating possible access to the
Web site news.

Figure 2: Example of desktop home page and its corresponding PDA pages obtained through semantic redesign algorithm.

5. EXAMPLE OF DYNAMICALLY
GENERATED MIGRATORY INTERFACE

In this section we present a usage sample of our system by
considering the following scenario. Robert has an article accepted
to “Mobile HCI 2002” and he needs to register to the forthcoming
conference. He turns on his desktop, accesses the conference site

and starts filling in the registration form. After having filled the
“telephone” field, an alert on the screen advises him that it is very
late and he has to join a meeting regarding budget allocation for
the new year. Robert asks for migration and the registration page
is transferred to the PDA from which he can continue to fill in the
fields exactly from where he left on the desktop, while moving to
the meeting room.

88

Figure 3: An Example of Dynamically Generated Migratory Interface.

Having completed the registration, Robert comes back to the

conference home page to check the programme of the event, to see
when his talk is scheduled for. Selecting the “Sections” link he
gets the first part of the site menu from which he can finally
access the conference programme and see that he will be the first
speaker of the second conference day.

The conference site has been designed only for desktop platform.
When Robert asks for migration, the migration server recognises
that the most suitable target device is a PDA, thus the registration
page in the proxy server is stored and reversed into a logical
description that is used to split and redesign the page for the PDA.
The PDA screen is too small for containing all the interaction
objects of the original page, hence the redesign algorithm properly
divides it into smaller pages adapting them to the PDA features.
Once the redesign phase is completed, the runtime state of the
desktop original page is transformed and applied to the new
pages. The redesigned page, containing the interaction object
corresponding to the last task performed by the user, that is the
“Telephone” field, is finally loaded onto the PDA (see Figure 3).
The redesigned pages still contain links of unvisited pages to the

original desktop version pages of the site. When Robert selects the
link for accessing the home page, the proxy server retrieves the
desktop version. Then, the reverse engineering and the semantic
redesign process are applied again so that, lastly, Robert sees the
different sections of the home page on his PDA divided into
multiple parts and properly fitting the PDA screen.

6. CONCLUSIONS and FUTURE WORK
We have presented a system able to support user interface
migration, where no constraints are given on how the application
was originally designed and developed. Migration involves
platforms different from the one for which the user interface was
originally designed (the desktop), thanks to a reverse
engineering/semantic redesign process. Interaction continuity is
supported by using logical descriptions that help to associate
interactors in the source device with interactors on the target
device. A prototype supporting the approach has been
implemented and we plan to extend it in such a way as to also
consider migration to multi-modal interfaces (for example, with
combined use of graphic and vocal interactions).

89

Future work will be dedicated to extending this approach to
support distributing migration where users can move from one
device to multiple devices for carrying on their tasks.

7. REFERENCES
[1] Balme, L. Demeure, A., Barralon, N., Coutaz, J., and

Calvary, G. CAMELEON-RT: a Software Architecture
Reference Model for Distributed, Migratable, and Plastic
User Interfaces. In Proceedings the Second European
Symposium on Ambient Intelligence (EUSAI ‘04), LNCS
3295, Markopoulos et al. Springer-Verlag, Berlin
Heidelberg, 2004, 291-302

[2] Bandelloni, R., Berti, S., and Paternò, F. Mixed-Initiative,
Trans-Modal Interface Migration. In Proceedings of Sixth
International Conference on Human Computer Interaction
withj Mobile Devices and Services (Mobile HCI’04)
(Glasgow, September 2004), LNCS 3160. Springer-Verlag,
216-227.

[3] Bouillon, L., and Vanderdonckt, J. Retargeting Web Pages to
other Computing Platforms. In Proceedings of IEEE 9th
Working Conference on Reverse Engineering (WCRE'2002)
(Richmond, Virginia, 29 October-1 November 2002), IEEE
Computer Society Press, Los Alamitos, 2002, 339-348.

[4] Chen, Y., Ma, W.-Y., and Zhang, H.-J. Detecting Web page
structure for adaptive viewing on small form factor devices.
In Proceedings of the twelfth international conference on
World Wide Web (WWW’03)(May 20-24, 2003, Budapest,
Hungary), ACM 1-58113-680-3/03/0005, 225-233.

[5] Coninx, K., and Vandervelpen, C. Towards Model-based
Design Support for Distributed User Interfaces. In
Proceedings of the Third Nordic Conference on Human
Computer Interaction (NordiCHI’04)(October23-27, 2004,
Tampere, Finland), ISBN:1-58113-857-1, 61-70.

[6] Coninx K., Luyten K., Vandervelpen C., Van den Bergh J.,
and Creemers B. Dygimes: Dynamically Generating
Interfaces for Mobile Computing Devices and Embedded
Systems. In Proceedings of Fifth International Conference
on Human Computer Interaction with Mobile Devices and
services (MobileHCI’03)(September, 8-11,2003,Udine,
Italy), LNCS 2795, ISBN 3-540-40821-5.

[7] Garlan, D., Siewiorek, D., Smailagic, A., and Steenkiste, P.
Project Aura: Toward Distraction-Free Pervasive Computing.
IEEE Pervasive Computing, Vol 21, No 2 (April-June 2002),
22-31.

[8] MacKay, B., Watters, C. R. and Duffy, J. Web Page
Transformation When Switching Devices. In Proceedings of
Sixth International Conference on Human Computer
Interaction with Mobile Devices and Services (Mobile
HCI’04) (Glasgow, September 2004), LNCS 3160. Springer-
Verlag, 228-239.

[9] Mori, G., Paternò, F., and Santoro, C. Design and
Development of Multi-Device User Interfaces through
Multiple Logical Descriptions. IEEE Transactions on
Software Engineering, August 2004, Vol.30, N.8, IEEE
Press, 507-520.

[10] Paganelli, L., and Paternò, F. A Tool for Creating Design
Models from Web Site Code. International Journal of
Software Engineering and Knowledge Engineering, World
Scientific Publishing 13(2), (2003), 169-189.

[11] Paternò, F. Model-based Design and Evaluation of
Interactive Applications. Springer Verlag, ISBN 1-85233-
155-0, 1999.

90

