
K. Miesenberger et al. (Eds.): ICCHP 2008, LNCS 5105, pp. 242–249, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Semi-automatic Support to Adapt E-Documents in an
Accessible and Usable Format for Vision Impaired Users

Elia Contini, Barbara Leporini, and Fabio Paternò

ISTI-CNR, Pisa, Italy
{elia.contini,barbara.leporini,fabio.paterno}@isti.cnr.it

Abstract. Electronic material (e-documents, e-books, on line resources, etc.)
represents an essential tool for continuous learning for print-impaired people,
provided it is well-structured. To obtain accessible and usable e-content, spe-
cific requirements should be applied from the early beginning or used when
adapting existing electronic formats. In this paper we present a method, and a
first associated prototype, for making e-documents in a format, which is acces-
sible and usable for vision impaired users. The resulting environment is com-
posed of various transformations, with different degree of automation, and
applies a number of guidelines that have been defined for this purpose.

Keywords: accessible publishing, e-books, accessibility, tool.

1 Introduction

In several countries, specific accessibility laws have been approved, which require
publishers to provide electronic accessible versions of school textbooks. Nevertheless,
disabled students in mainstream classrooms do not always have access to the same
learning tools as their classmates. The time-consuming process of turning books or
other materials into Braille, audiotape, or large-print editions means that visually
impaired students often start the school year without their textbooks.

We use the term e-document for a content (text, figures etc.) that is stored in elec-
tronic form. Thus, an e-document can be a simple text, a more complex document,
with title, paragraphs and subparagraphs, or an electronic book organised into chap-
ters and sections. The format of many e-documents available to visually impaired
people can be fairly simple and easy to modify to provide accessibility, as is often the
case for narrative books. Unfortunately, it is not the same for the scientific e-
documents, which may contain complicated explanations, graphs, tables and formu-
lae. In this case it is more difficult to create accessible and usable texts. Overall, our
work aims at addressing the accessibility and usability issues in electronic publishing,
by providing recommendations for creating accessible e-documents and supporting
the conversion of inaccessible e-documents.

In this paper, we first introduce the issues related to e-document accessibility and
explain the basic motivations driving the research on this topic. A short section re-
ports on the state-of-art in this field. Then, after having introduced the accessibility
and usability issues that should be considered in designing e-documents for readers

A Semi-automatic Support to Adapt E-Documents in an Accessible and Usable Format 243

with vision impairments, we discuss main issues concerning e-book manipulation. To
address this topic we propose a semi-automatic tool, currently in the prototype stage,
to support the conversion of e-documents to an accessible and usable format.

2 Related Work

In order to overcome limitations for those people who cannot meet their information
needs from standard printed material, several attempts have been made to develop
specialised electronic formats. One of these is a by-product of the Daisy consortium
(Digital Accessible Information SYstem) [4], which is working on producing a stan-
dard for talking books characterized of navigational information to better move
through the document. With DAISY format hybrid books can be made available in
the DAISY format, ranging from audio-only, to full text and audio, to text-only.

Other studies on this topic include the work by Sun et al. [8], who designed e-Book
browsers that aid users in perceiving and understanding the important conceptual
structures of a book, and hence improve their comprehension of the book content.

A number of authors have proposed ad-hoc solutions for visually-impaired people.
Adjouadi et al. [1] introduced a new automatic book reader for blind people. Their
objective is the design of a fully integrated system that is relatively fast, but inexpen-
sive and effective with a high reading accuracy. Kanahori et al. [6] proposed an inte-
grated system for scientific documents including mathematical formulae with speech
output interface. “ChattyInfty” is a system composed of a recognizer, editor and
speech interface for scientific documents, including PDF documents. In [2] the au-
thors discuss a computer system enabling interactive online presentation of multime-
dia Daisy books over the Internet. In particular the proposed DaisyReader allows
interactive voice reading of math formulas. In our study we prefer to propose solu-
tions to design, develop or adapt accessible and usable e-books, which can be read
with traditional tools (e.g. adobe reader, Web browser) in order to obtain more gen-
eral solutions, with the greatest benefits for all. In [3] the authors discussed an ap-
proach for automatically generating an e-textbook on the Web for a user specified
topic hierarchy. Their approach consists of generating an e-book on the Web starting
with a topic indicated by the user. Users can then browse through the descriptive
pages like a book. In [5] the problem related to tagged PDF is faced by using an
XML-based structure. The tool implemented is an Acrobat Plug-in. Conversely, our
methodology is aimed at developing a semi-automatic support to adapt a single for-
mat to various ones, by tacking into account specific user requirements.

3 An Accessible and Usable E-Document

A visually impaired person generally interacts with the operating system and its ap-
plications through assistive technology, a screen reader in the case of a blind user and
a magnifier for a low vision user. As in the case of Web pages [7] the main problems
encountered by a visually impaired person when interacting via these assistive tech-
nologies can be summarised as Lack of context, Information overload, Excessive
sequencing in reading. Even if a document is available in a format considered

244 E. Contini, B. Leporini, and F. Paternò

accessible, such as TXT, PDF or HTML, the reader can still find it difficult to read it
efficiently. When reading an electronic document users should have at least the same
options as when reading a paper document, including being able to obtain an over-
view of the contents (e.g. sections) and reading each component (e.g. figures, tables
or graphs) easily. Therefore, a specific structure, additional navigation features, and
appropriate text descriptions should be added to an e-book.

Accessibility is the main feature that makes an e-book readable by everyone and it
is not necessarily guaranteed even if the document is available in a digital format.
Consideration of usability is also very important since e-books are interactive systems
and their access should be easy and consider the needs of their readers. For a docu-
ment to be accessible, it should have a number of specific features. The main features
that make e-documents accessible can be summarised as follows:

• The electronic format should be (e.g. TXT or X/HTML) accessible by a
screen reader or magnifier; or the specific reader required for working with a
particular format (e.g. DOC or PDF) should be accessible by assistive tech-
nologies.

• All figures or graphs should have appropriate alternative descriptions.
• Tables or diagrams should be well-structured so that they are read correctly

when sequentialized by the screen reader.

In additio006E to accessibility requirements, usability features are necessary to
make an electronic document or book easy to read. In our study we address specific
questions related to the usability of the interface of an e-document to be read by blind
users. In particular, the main usability features for improving accessible e-documents
include methods and techniques to facilitate content and navigation understanding
(e.g., title clearness and structure, complex non-textual objects, etc.).

Developing accessible e-documents requires consideration of many different fac-
tors. In this perspective we proposed a set of 10 guidelines aimed at improving read-
ability and navigability through screen readers. The proposed guidelines involve three
fundamental aspects: (1) the structure of the document should be clear. This can be
obtained by using appropriate tags for the various type of elements to clearly indicate
the main parts of the document (titles, paragraphs, notes, etc.). (2) Non-textual objects
(such as figures, formulas, tables), if not adequately represented, can create serious
access difficulties. (3) Navigation, specific mechanisms for navigating in a document
should be introduced. For example, if the final format supports links to access pieces
of content (such as XHTML) then they should be added. If this is not possible some
kind of mechanism to easily identify specific parts (for example, an index at the be-
ginning of the document) should be introduced.

4 Our Approach to Obtaining an Accessible and Usable
E-Document

The format of some e-books (e.g. narrative ones) is relatively simple and easily modi-
fiable to improve accessibility. Conversely, in the case of scientific books, such a
transformation process is more difficult due to the complexity of the content (e.g.
graphs, data tables, etc.). As the development process is generally graphical, and

A Semi-automatic Support to Adapt E-Documents in an Accessible and Usable Format 245

accessibility and usability rules are rarely considered, such electronic documents need
to be modified to make them accessible to readers using assistive technologies. Such a
task might be difficult to be carried out by the authors, and it could require a lot of
effort as well as a long time. In this perspective, a semi-automatic tool for carrying
out the conversion could be very useful.

A number of transformations should be applied to the original format to obtain an ac-
cessible version. Such transformations have different levels of automation. For this
reason, in addition to the first source format – probably that provided by the publisher –
various types of intermediate formats are needed. They can be summarised as follows:

o Source format (Fs), provided by the publisher;
o Pre-intermediate format (Fpi), which is the output of the first semi-automatic

transformation;
o Intermediate format (Fi), which includes all needed information (i.e. content,

additional descriptions and multimedia objects, etc.) and is the basis for cre-
ating the final one;

o Final format (Ff), which is provided to the end user. It may be in TXT, RTF,
accessible PDF and DAISY formats.

Regarding the input format we taken into account the PDF format as source docu-
ment. We based our choice on the fact that any other (not graphical) document can be
exported into PDF file. An XML-based solution has been considered for the interme-
diate formats. The XML-based file was defined in order to contain all needed infor-
mation (textual and external audio descriptions, content index, and so on). Lastly, for
the final output versions several formats are considered beginning from the RTF,
TXT, X/HTML as well as tagged PDF, Open Document and daisy formats.

5 The Transformation System

5.1 Main Features and Functionalities

In order to transform an e-document, the person in charge of the transformation has to
perform a number of activities, including checking the output of the automatic trans-
formation, processing any parts that need to be corrected, and inserting the alternative
descriptions for the figures or the extended descriptions for figures and tables. The
editor should enable the possibility of parallel scrolling the original document and the
corresponding data extracted in order to allow easy modification. Another possibility
is to allow the operator to browse the file scrolling only images, tables and lists with-
out considering the other elements. It also provides the ability to associate text and
audio descriptions to images and tables, also allowing the modifications to be saved in
the intermediate format. The main features of the environment can be briefly summa-
rised as follows:

• One input format, several output formats. The tool inputs a PDF document
and produces several different output formats. In addition to accessible PDF
and X/HTML files, the DAISY (Digital Accessible Information System)
format is supported.

246 E. Contini, B. Leporini, and F. Paternò

• Semi-automatic support for transformation activities. The tool performs as
many actions as possible automatically, but several activities have to be car-
ried out manually. For instance, descriptions of figures and graphs have to
be added manually. Other activities can be carried out by the tool and then
the result can be revised by the operator. For example, the tool tries to re-
build the structure by recognising the titles of sections and sub-sections. Us-
ing this structure, a table of contents is added to the document and heading
styles are assigned. When such activities are carried out automatically, the
operators have to check and correct any incorrect titles. The same is true for
tables. The tool attempts to rebuild a table from the original version; the op-
erator has to check and probably modify it to ensure the structure is correct.

• Interactive modality to facilitate adapting non-textual objects. As a docu-
ment can be composed of many pages, the tool offers operators a set of func-
tionalities that assist in carrying out several repetitive activities more
quickly. For example, when the operator is adding descriptions to figures and
graphs, the tool facilitates the process by showing only the pages that con-
tain images.

5.2 System Architecture

The system is composed of four main components designed to carry out the main
phases: (1) the content extractor; (2) the editor; (3) the optimiser; and (4) the final
converter.

I. Content extractor: it takes the document and obtains the text and the images
trying to rebuild the logical structure through some heuristics. The output is in
the intermediate format.

II. Editor: it allows the operator to modify the document in intermediate format
generated by the extractor.

III. Optimiser: it takes the result of the modifications made with the editor and
generates a document in a valid intermediate format, which applies the guide-
lines for accessible documents and those for generating the final formats. The
resulting valid intermediate format has all the necessary information to gener-
ate the final formats.

IV. Final converter: it takes the intermediate format and generates the required fi-
nal formats (e.g. TXT, RTF, X/HTML and tagged PDF). For this purpose it
uses XSLT transformations.

5.3 Content Extractor: The Heuristics

As already mentioned, in our study we assumed that publishers provide their elec-
tronic documents in the PDF format. Thus, for the time being, the content extractor
takes PDF documents as input. The result of this first automatic processing is an
XML-based file, which is then combined with the extracted content as well as all
changes and additions made by the operator. The XML-based intermediate format is
similar to HTML structure (e.g. H1, H2, etc.) in order to use tags that can be more
familiar to the operator. In fact, the automatically extracted content needs to be han-
dled by the operators who can use a graphical editor or a source code editing (see

A Semi-automatic Support to Adapt E-Documents in an Accessible and Usable Format 247

Figure 1). In addition, the final formats - X/HTML or PDF - should be tagged in order
to reproduce the logical structure; thus tags such has <h1>, <p> are used.

In this context, to obtain the document content - text and main non-textual objects -
we developed an extraction module using the JPedal library (http://www.jpedal.org)
and applying a set of specific heuristics developed to identify rules aiming to better
manipulate PDF information and document logical structure. The content extractor
first applies one specific heuristic for positioning the figures, whose result is neces-
sary to better apply the other heuristics. The extractor furnishes as much the structural
information as possible in order to reduce the manual work required of the operators.
The text and formatting styles extracted by the JPedal library are not themselves
enough to reproduce a document structure: the extracted data need to be handled and
exploited to obtain a logical structure. To this end, we propose a set of heuristics for
better rebuilding the content logical structure of the document. The JPedal functions
available to handle PDF documents are able to provide the text content, the images
and rendering attributes, such as font type, face, size, and the spaces between the
words (when there is more than one) indicated with <space count>. These formatting
styles (font and spaces) are mainly used to rebuild the document structure. Thus, addi-
tional more specific heuristics are needed to obtain more structural information. The
main heuristics implemented in the content extractor module are:

Font-size statistic-based reconstruction of paragraphs and headings. A statistical
analysis on the font-size is carried out in order to rebuild the content structure (i.e.
paragraphs and headings). It assumes that the most often used font is probably associ-
ated to the main text, the corresponding text is wrapped in <P> tags. Unfortunately,
the JPedal library marks each line as a possible paragraph. Thus, at the end it is neces-
sary to merge some consecutive elements into a single block (see the heuristic below).
The biggest font is probably used for the first heading level, thus the corresponding
content is marked with <h1>, and so forth. We used <h1>, <h2>, and so on to mark
heading levels by analogy with X/HTML structure.

Image positioning. All the images on each page are extracted. To take out a figure
from each page is not difficult. Some problems occur when associating the figure to
its exact position within the page to be built. This is related to appropriately associate
captions with their images as well as to reproduce a well-structured final document
with the same visual rendering of the original one. This heuristic identifies the image
position by computing the consecutive blank lines. In fact, after conducting some
extraction tests, we noticed that the JPedal library leaves a number of contiguous
blank lines, which is proportional to the image size. If the consecutive empty lines
are sufficient to contain the image then the tag is included in the tar-
get page. The corresponding image is stored in an external file and its path is added to
the src attribute. The image is shown when the operator visualises the extracted con-
tent by using the graphical editor.

Reconstruction of ordered and unordered lists. To determine the presence of ordered
or unordered lists, each textual line is analysed. To identify a potential item, the first
character of the line is considered. If the line starts with "1.", it probably means it is the
first element of a new ordered list. For the unordered lists, the heuristic checks if the
first character is a special symbol (e.g. ".", "*"). Next, the consecutive presence of spe-
cial symbols in the following lines is verified in order to determine if it could be a list.

248 E. Contini, B. Leporini, and F. Paternò

Table reconstruction. Based on several conducted tests, we observed that a table is
extracted row by row. To recognise that a line is a row in a table, <space count> tags
(which indicate a number of consecutive spaces) are searched for: a line containing at
least two of such tags is probably a table row.

Merging of adjacent elements. The purpose of this heuristic is to "compact" nearby
similar elements into a single block. This is particularly useful to merge consecutive
lines recognised as separate paragraphs.

Figure 1 shows the user interface of the extracting module, which, is split into three
parts: on the left, the original PDF document; in the centre there are the graphical
editor and the resulting document description, on the right, the list of the extracted
figures with the possibility to edit corresponding information such as the alternative
description or the information for the longdesc attribute. Such a structure should allow
operators to access and manipulate both documents: on the left the source document,
and then in the remaining parts they can interact with the extracted information. Spe-
cifically, the editor allows the operators to work directly on the XML-based descrip-
tions or with information such as all chapter and paragraphs headings.

In the editor, by simply clicking on a figure it is then possible to edit the corre-
sponding alternative description and the longdesc content, and insert an audio expla-
nation. The same functions are also accessible by pressing a shortcut (Ctrl+I). This
alternative modality should also allow blind operators to use the editor; they could
receive textual or audio descriptions from an expert in the application domain consid-
ered in the document, and then proceed to inserting them by using the tool.

Fig. 1. An example of content extracted from a PDF file

A Semi-automatic Support to Adapt E-Documents in an Accessible and Usable Format 249

6 Conclusions and Future Work

Making e-documents accessible and usable for vision impaired users is not an easy
task. Novel environments are necessary in order to support this activity. In this paper,
we have presented a method for supporting such activity and a corresponding proto-
type. It is based on some automatic transformations that require the support of opera-
tors at some points to obtain more meaningful results. We have applied our environ-
ment to a first small set of e-documents and the results are encouraging. Future work
will be dedicated to engineering the prototype and apply it to a wider set of cases in
order to check its general validity.

References

1. Adjouadi, M., Ruiz, E., Wang, L.: Automated Book Reader for Persons with Blindness. In:
Miesenberger, K., Klaus, J., Zagler, W., Karshmer, A.I. (eds.) ICCHP 2006. LNCS,
vol. 4061, pp. 1094–1101. Springer, Heidelberg (2006)

2. Brzoza, P., Spinczyk, D.: Multimedia Browser for Internet Online Daisy Books. In: Mi-
esenberger, K., Klaus, J., Zagler, W., Karshmer, A.I. (eds.) ICCHP 2006. LNCS, vol. 4061,
pp. 1087–1093. Springer, Heidelberg (2006)

3. Chen, G., Li, Q., Jia, W.: Automatically Generating an E-textbook on the Web. World Wide
Web 8(4), 377–394 (2005)

4. DAISY Consortium (2005), http://www.daisy.org
5. Hardy, M.R.B., Brailsford, D.F., Thomas, P.T.: Creating structured PDF files using XML

templates. In: Proceedings of the 2004 ACM symposium on Document Engineering, Do-
cEng 2004 (2004)

6. Kanahori, T., Suzuki, M.: Scientific PDF Document Reader with Simple Interface for Visu-
ally Impaired People. In: Miesenberger, K., Klaus, J., Zagler, W., Karshmer, A.I. (eds.)
ICCHP 2006. LNCS, vol. 4061, pp. 48–52. Springer, Heidelberg (2006)

7. Leporini, B., Paternò, F.: Increasing Usability when Interacting through Screen Readers.
Springer International Journal Universal Access in the Information Society (UAIS) 3(1),
57–70 (2004)

8. Sun, Y., Harper, D.J., Watt, S.N.K.: Design of an e-book user interface and visualizations to
support reading for comprehension (Posters). In: Proc. of ACM SIGIR 2004, pp. 510–511
(2004)

	A Semi-automatic Support to Adapt E-Documents in an Accessible and Usable Format for Vision Impaired Users
	Introduction
	Related Work
	An Accessible and Usable E-Document
	Our Approach to Obtaining an Accessible and Usable E-Document
	The Transformation System
	Main Features and Functionalities
	System Architecture
	Content Extractor: The Heuristics

	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

