
Support for Authoring Service Front-Ends
Fabio Paternò, Carmen Santoro, Lucio Davide Spano

ISTI-CNR, HIIS Lab, Via Moruzzi 1,
56124 Pisa, Italy

{Fabio.Paterno, Carmen.Santoro, Lucio.Davide.Spano}@isti.cnr.it

ABSTRACT
The success of service-oriented computing has important
implications on how people develop user interfaces. This paper
discusses a method for supporting the development of interactive
applications based on the access to services, which can be
associated with user interface annotations. In particular, we show
how model-based descriptions can be useful for this purpose and
the design of an authoring environment for the development of
interactive front-ends of applications based on Web services. A
prototype of the authoring environment is presented.

Categories and Subject Descriptors
H5.m. Information interfaces and presentation (e.g., HCI).

General Terms
Design, Human Factors, Languages

Keywords
User Interface Composition, Model-based Design, Web services.

INTRODUCTION
Service-oriented solutions are becoming more and more adopted
in the area of software engineering. There are mainstream
approaches able to describe the workflow of applications
exploiting compositions of such services (see for example BPMN,
http://www.bpmn.org/), which can then be translated, to some
extent, into executable descriptions, such as in WS-BPEL.
However, they provide little support to describe the interactive
part of an application. One specific characteristic of such
interactive applications is that they have to be developed
exploiting pre-existing functionalities implemented through Web
services. The functional interface of such functionalities is
described through WSDL (Web Services Description Language)
files, which are XML-based descriptions indicating what
operations are available and the associated input and output
parameters and data types. Often the people who develop
interactive applications are different from those who implemented
the Web services. Thus, in order to facilitate the work of the UI
designers, the Web services can be annotated with user interface
hints whose level of detail can range from simple label
suggestions to complex user interface specifications.

Another approach is to automatically generate the user interfaces
corresponding to the Web services through rules mapping WSDL
descriptions into user interface descriptions (see for example [6]).
However, this approach produces reasonable results only when

the application domain is well known.

In this paper, after discussing related work, we present the
proposed methodological approach for addressing such issues. We
introduce the main features of the new model-based language
used and describe the tool supporting the method. We also
provide a small example to better illustrate the features of the
approach. Lastly, we draw some conclusions along with
indications for future work.

RELATED WORK
A number of approaches have already been proposed for
composing services in such a way that the output of one service is
the input for another one, thus we will not address this issue. For
example, WS-BPEL [7] (Business Process Execution Language)
is an XML language for describing and executing business
processes. It consists of the composition of various activities
(building block of processes such as variable assignment, wait,
raise exception etc.), using usual structured programming
constructs. It can be used for the composition of Web services at
the business level, but it does not include specific information on
the user interface for the service access. An extension of WS-
BPEL is BPEL4people [1] , which tries to add a specification for
the user interaction into the business process. It introduces the
people activity, which is performed by a human-being. However,
the interaction is defined always at the business level: a logical
description of the user interface is not in scope for BPEL4People.

Some work has been dedicated to the generation of user interfaces
for Web services [11, 12] but without exploiting model-based
approaches. In [13] there is a proposal to extend service
descriptions with user interface information also exploiting
model-based approaches. For this purpose the WSDL description
is converted to OWL-S format, which is combined with a
hierarchical task model and a layout model. We follow a different
approach, which aims to support the access to the WSDL without
requiring their substantial modifications in order to generate the
corresponding user interfaces, still exploiting logical interface
descriptions.

Since often concrete logical descriptions are specified through
XML-based user interface languages [5], there have been
proposals to use XML tree algebra-based techniques [2], for
composing concrete presentations or portions of it. For example,
in [3] the general XML tree algebra is applied to user interface
composition and decomposition of graphical user interfaces
specified in a XML-based language (UsiXML) [4]. That work
includes operations for combining interactors, i.e. the fusion
(composition with repetition of the intersection) and the union
(composition without repetition of the intersection). However, that
method does not take into account the possible temporal
constraints in the interactions.

Task models, such as those described by ConcurTaskTrees (CTT)
[10], can overcome such limitations also thanks to the rich set of
temporal relationships that they allow designers to express. In
terms of granularity, tasks can be elementary tasks (namely: tasks
that are considered as a logically atomic entity which cannot be

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
EICS’09, July 15–17, 2009, Pittsburgh, PA, USA.
Copyright 2009 ACM 908-1-60558-600-7/09/07…$5.00.

85

further refined) and structured tasks (namely, tasks whose
specification consists in a decomposition and refinement of a
number of logically connected, smaller sub-tasks). It is also
possible to identify task patterns: they are reusable structures in
task models, which can be used in various applications. Thus,
whenever designers realise that the problem they are considering
is similar to one which has already been found and solved, then
they can reuse the solution previously developed.

In the next section we describe how such task models can be
exploited in the design of interactive applications based on Web
services.

METHOD
Since our goal is to support applications based on Web services, a
traditional top-down approach going through the various
abstraction layers does not seem particularly effective. There are
many Web services already available and their exploitation is
supposed to be able to include such existing third party
functionalities, rather than being able to design a dedicated
application from scratch, as a top-down approach generally does.
Indeed, differently from traditional approaches in which design
and development of dedicated pieces of functionalities are
assumed, in the case of Web services the idea is to create
interactive applications by accessing application functionalities
developed by others. The basic building blocks of the system
already exist and this imposes that a bottom-up stage should also
be included. Therefore, the solution that has been envisaged is to
have first a bottom-up step in order to analyse and include in the
design the Web services providing functionalities useful for the
new application to develop.

In order to do this we envisage a number of steps. First, as we
plan to describe the composition of the user accesses to the
various services using a task model language (e.g. CTT), we have
to perform an association between the elementary tasks that we
want to include in the task model and the operations specified in
the Web services. The task model is supposed to express how the
interactive application assumes that the tasks are carried out.
Then, if some elementary (system) tasks are associated with the
relevant Web Services, we can provide useful indications about
how the Web services, and the associated user interface
annotations, if any, should be exploited. It is worth pointing out
that the development of the task model is generally carried out by
a multidisciplinary team in which various roles/stakeholders are
involved and is largely driven by user requirements.

Some rules can be followed in order to perform such associations
in a consistent way. As said, since Web services are application
functionalities, they will be associated with system tasks. In
addition, it will be important to use within the task model a level
of granularity that is suitable to expressing the details of the
functionalities described in the Web services. Then, beyond
associating system tasks to Web services, it is important to
further decompose such system tasks into system sub-tasks in
which each such subtask will be associated with an operation
defined in the web service. Thus, if a Web service supports three
operations, then there would be three basic system tasks.

Once such associations are performed, the resulting task model
provides a description of how the various activities are supposed
to be carried out within the interactive application (exploiting
Web services associated to some application tasks). This is the
result of the intersection of a bottom-up step with the initial, top-
down phase consisting of the development of the hierarchical task
model. Subsequently, the task model thus obtained will be used
to derive, through a further top-down stage, a first draft of the user
interface at a logical level. The information contained in the task
model will be used to derive a first draft of the user interface at an
abstract level (which means in a platform-independent way),
which will then be refined into more concrete terms (namely,
platform-dependent), until a final user interface description is
defined in a platform-dependent implementation language.
However, it is worth pointing out that in the current approach
customized for Web services, an additional piece of information
will also be used to derive the user interface implementation. This
is represented by the so-called service annotations, which are
pieces of information associated to Web services and aimed at
providing some indications that can be useful for rendering the
user interface. Examples of annotations are labels that are
suggested for presenting the associate data, which may be
platform dependent (e.g. short version for mobile devices).
Another example is an annotation that provides more concrete
information regarding the data types considered. For example, the
Web service operator can have a string data type, but the
annotation indicates that it is an enumerated value, which at the
interface level does not require an editing string interaction object
(e.g. a text box), but a selection interactor (e.g. a pull-down
menu). There should be an analysis of the operations and the data
types associated with the input and output parameters of the Web
services considered. This has to be done in order to associate them
with suitable abstract interaction objects.

At the abstract level it is possible to compose user interface
elements by identifying either single groups of logically
connected elements or relations among groups of elements.
Groupings and relations are considered abstract composition
operators. Groups, relations, and elements can be composed into
presentations. Each (abstract) presentation identifies the elements
that will be rendered at the same time. In addition, a way to
compose entire presentations is using abstract connections, which
specify the temporal order according to which they have to be
made available to the user. When moving to concrete descriptions
(which assume the existence of a given platforms, but are still
implementation language independent), the abstract concepts are
refined in a platform-dependent manner. For example, in a
graphical user interface the techniques for grouping can be the use
of the same colour, the alignment of the elements, the use of
graphical containers and so on.

In order to support our method we have designed a new authoring
tool, which provides a rich set of functionalities. The software
modules composing the architecture of our authoring environment
are shown in Figure 1. The FUI indicated in the figure is the Final
User Interface (which is the implementation of the user interface).

86

As it can be seen, some basic modules are provided to the UI
developers (see top part of the figure). The first one allows them
to perform the associations between tasks and Web services. The
second one supports editing of the user interface at various
abstractions levels. The third one allows for setting up a number
of mappings for model transformation that can vary depending
on the different designer requirements and needs. The
opportunity of having transformations that are not hardwired in
the code enables the designer to modify such transformations
easily and then obtain an environment that includes such
mappings in the supported transformations. Lastly, the
possibility of previewing the user interface generated is
supported.

MARIA
MARIA is a new model-based language, which inherits the
multilayer approach of TERESA [9] with one language for the
abstract description and multiple platform-dependent concrete
languages refining the abstract one depending on the interaction
resources at hand. At the concrete level it is necessary to
identify platform-dependent techniques for the interface
elements and for making groups and relations perceivable to the
user. For example, in tangible interfaces physical proximity can
identify a group of elements and trigger a functionality when the
group is dynamically created, while in a graphical interface
attributes such as colour, alignment, and containers are used to
indicate a group of elements logically related to each other.

With respect to TERESA, a number of new features have been
included in the new language. In MARIA we have introduced
an abstract description of the data model associated with the user
interface, which is needed for representing the data (types,
values, etc.) handled by the UI. Indeed, by means of defining an
Abstract Data Type model, the interactors (the elements of the
abstract or concrete user interface) composing an abstract
[concrete] user interface, are connected either with a specific
type or with an element of a type defined in the abstract
[resp.:concrete] data model.

In addition, the introduction of a data model also enables for
more control over the admissible operations that will be carried
out on the various interactors. The introduction of a data model
allows for better supporting the format of the various input
values. Further advantages of having a data model are also the
possibility of correlating the values of interface elements,
supporting conditional presentation connections, and specifying
conditional layout of interface parts. For example, we can
express the case when depending on the value of a selection
object a different presentation is accessed. In MARIA XML the
data model is specified using the XSD type definition language.

Another aspect that has been included in the new language is
represented by the support for features that are typical, for
instance, of complex javascript codes/Ajax scripts, which allow
continuously updating of fields. Indeed, we have introduced the
continuously-updated Boolean attribute to the interactors. The
concrete level has the duty to provide more detail on this feature,
depending on the technology used for the final UI (Ajax for web
interfaces, callback for standalone application etc.).

Furthermore, an event model at abstract/concrete levels has been
included in the language. The introduction of an event model
allows for specifying at different abstraction levels how the user
interface is able to respond to events triggered by the user. In
particular, in MARIA XML two types of events have been
introduced: i) property change events: events that change the
status of some UI properties. The handlers for this type of event
indicate in a declarative manner how and under what conditions
property values are changed; ii) activation events are events with
the purpose to activate some application functionality (e.g.
access to a database or to a Web service).

Another feature that has been included in MARIA XML is the
possibility to express the fact that only some parts of a UI
presentation can dynamically change (this is also useful for
supporting Ajax techniques). In addition, it is also possible to
specify dynamic behaviour that changes depending on specific
conditions: this has been implemented thanks to the use of
conditional connections between presentations. More detailed
information on MARIA is available in [8].

Figure 1: The software architectural components of the tool

87

TOOL SUPPORT
The authoring environment supporting the method proposed is a
tool composed of three main sub-environments, with in addition
the possibility of previewing the implemented user interface.

The first one, “Tasks-Services Binding Editor”, is aimed at
supporting the associations between the tasks included in the
model corresponding to the application to be developed and the
Web services that the designer wants to include. In order to do
this, the designer has to access the repository of task models and
the URI where the Web services are made available. In addition,
within this module, it is also possible to import some
annotations associated to the Web service considered. Such
annotations provide further information about the part of the
user interface associated with the Web service. Once such task-
Web service associations have been carried out, a dedicated
module (“UI Composer/Transformer”) is then able to produce a
first draft of the corresponding Abstract/Concrete User Interface
(AUI/CUI) description by exploiting such various pieces of
information (tasks, web services, annotations).

The logical descriptions thus obtained are the output of the first
module and, in turn, the main input to another module (the
“User Interface Editor”) which is specifically aimed at
supporting designers in refining the logical descriptions
depending on the specific needs and requirements of the
application considered. Such User Interface Editor module
exploits the “Transformation engine” module to obtain a
concrete description from an abstract one, and then a user
interface implementation from a concrete description.

The tool is designed to contain a set of generators, each of them
implements a transformation that delivers a UI written in a
specific platform-dependent description language. The rules
included in the Transformation engine are defined in a specific
model, the “Transformation model”, which allows for specifying
the transformations that enable passing from a UI description to
a more concrete one. The usefulness of having a Transformation

Editor as a separate module lies in the enhanced flexibility for
designers to easily specify the transformations to be supported
from time to time and avoid having them hardwired in the code.

Figure 2 shows the environment for editing a concrete
specification: the left part contains an interactive tree diagram of
the available presentations, each one with its interactors and
interactor compositions defined in the model. The central part is
a direct manipulation interface for editing the user interface
model, where each interactor composition is a container for
different interface elements. The interface elements can freely
be added by drag-and-drop in the logical description: the right
part of the interface is a toolbox for adding new instances of
interactors to the model. It shows only the allowed elements for
the currently selected element, for example in Figure 2 one
grouping has been selected and the toolbox lists the interactors
that can be added to it. The user can also edit the interactor
attributes through the attribute list on the second tab, or set the
event handlers through the corresponding tab. In the left-bottom
part it is possible to specify the possible navigations across
various presentations through the various connections.

Figure 3 shows the interface of the Tasks-Services Association
Editor. The main part contains the CTT model using a
hierarchical tree representation: the children of a node are the
decomposition of the parent. The nodes at the same level are
connected using different temporal operators, which indicate the
dynamic behaviour of the various tasks. Each task is categorized
as Abstraction, User, Interaction or System. The System tasks
can be bound to Web service operations from the repository on
the right, where different services with their operations and data
types are listed. To import these descriptions, the designers
must simply specify the service Internet address. The CTT
model enhanced with the Web service associations and
annotations, which are represented on the left, is the starting
point to generate the corresponding abstract and concrete
descriptions, which can be modified by the designer using the
associated editor.

Figure 2: The Abstract/Concrete User Interface Specification Editor

88

EXAMPLE
In this section we present an example of use of annotations and
compositions in the design of UIs for Web Services. For the
sake of clarity, we consider a simple example in which the user
is supposed to provide information for sending out an email,
which is actually an excerpt extracted from a larger application.
One excerpt of the task model is visualised in Figure 4. Here we
analyze the methodological steps for a set of tasks for sending
an email, with address verification and auto text completion.

The system has to provide three functionalities: the address
validation, the word suggestions and mail delivery. These
functionalities can be implemented by three operations in three
different Web services, which are completely independent.
Regarding the following described services it is worth pointing
out that i) the services input and output parameters are
simplified versions of existing services; ii) the operations are
part of three different services that are probably from different
providers and are not designed to work together. The services
are:

• Verify address
http://providerone/verifyService/service.wsdl

operation: Boolean verifyAddress(string addr). The
operation will return true if the address is valid, false
otherwise

• Autocomplete
http://providertwo/AutocompleteService/service.wsdl;
operation: string[] suggestCompletition(string
typedString). The operation will return an array of
suggested words, with a maximum length.

• Deliver Mail
 http://providerthree/MailDeliverService/service.wsdl

operation: int sendMail(string address, string text). The
operation sends an email to the specified address, and

returns the result of the operation (for example 0 for
success, 1 for unreachable address etc.)

The task-service association binds the system tasks to the Web
services operations using the Web service pane of the editor and
specifies the connections between the tasks and the Web service
parameters. In particular, the authoring environment has a Web
service browser where the developer can specify the URL of the
WSDL file for inspecting operations (with input and output
parameters) and data types defined for invoking the service.
Then, s/he can load annotations for the selected Web service (if
any) for supporting the logical user interface generation process.

In the example considered, we have the following annotations
for the three operations:

• Verify address [input] addr: string (label: email)

• Verify address [output] Boolean

• SuggestCompletion [input] typedString: string (text-
edit, max-characters = 60, hidden)

• SuggestCompletion [output]: string[] (single choice,
low cardinality)

• Deliver mail [input] address: string (text-edit, max-
characters = 60 , label = Address)

• Deliver mail [input] text: string (text-edit, max-
characters = 4000, label = Text)

• Deliver mail [output] code: int (table error code->
output message)

The generator creates a first draft of the abstract user interface
description from the task model. In our example the result is a
partition of the tasks in two sets shown in Figure 4 (blue and red
rectangles).

Figure 3: The Task-Service Association Editor

89

Figure 4: The task model for sending out an email

In this approach, on the one hand the service operation bindings
is used to: i)generate the list of the external functions (reference
pairs <service URL, operation name>); ii) generate the abstract
script for calling the web service (to be “translated” to real code
when generating the FUI); iii) generate the handlers for the
abstract events (i.e. modify the text of the mail text area with the
first suggestion for the typed word). On the other hand, the
annotations are used for i) generating user friendly attributes
(such as labels) for presentations, groupings and interactors; ii)
using the correct interactor types according to the service
developer suggestions.

The resulting abstract interface description is shown in Figure 5.
It is composed of two presentations (Write_Mail and
Result_Presentation). This is obtained partially automatically.
The generated output has been edited in order to move one
interactor to the second presentation and have more meaningful
interactor names.

Figure 5: The Abstract Description of the Example.

The next step is the selection of a target concrete platform (for
example the graphical desktop platform) and a transformation
for creating the corresponding concrete interface. The
transformations define (automatically or manually) the concrete
interactor that will implement the abstract one (i.e. text field for
the address text-edit, a text area for the email text and a button
for the send mail activator). The developer can also fine-tune the
attributes of the presentations, such as background colour, fonts
etc.

The last step is the generation of the final UI selecting an
implementation language suitable for the current concrete
description. For example, a graphical concrete description can
be associated with XHTML or Java.

CONCLUSIONS and FUTURE WORK
We have presented the design of an authoring environment for
the development of user interfaces for applications based on
Web services and the associated tool support. We have shown

how task models can be used to describe how activities should
be performed, including those implemented through the Web
services. Then, the resulting task model can be used to start the
generation of corresponding user interfaces, which can be
improved exploiting specific Web services annotations, whose
purpose is to provide developers with hints about related
aspects. The environment also provides designers with support
to easily edit the user interface logical descriptions at various
abstraction levels.

A prototype of the design environment has been shown. Future
work will be dedicated to improving the rules for transforming
task models into user interface logical descriptions, and testing
the usability of the authoring environment.

ACKNOWLEDGMENTS
We gratefully acknowledge support from the EU ServFace
Project (http://www.servface.eu).

REFERENCES
1. Agrawal, A., Amend, M. Das, et al.: Web Services
Extension for People (BPEL4People), Version 1.0, June 2007.

2. El bekai A., Rossiter N., "A Tree Based Algebra Framework
for XML Data Systems", Proceedings ICEIS 2005, Miami,
USA, May 25-28, 2005.

3. Lepreux, S., Vanderdonckt, V., Michotte, B.: Visual Design
of User Interfaces by (De)composition. Proceedings DSV-IS
2006, LNCS, Springer 2006, pp.157-170.

4. Limbourg Q., Vanderdonckt J., Michotte B., Bouillon L.,
Lopez-Jaquero V. USIXML: A Language Supporting Multi-path
Development of User Interfaces. EHCI/DS-VIS 2004: 200-220.

5. Luyten, K., Abrams, M., Vanderdonckt, J., & Limbourg, Q.
(2004). Developing User Interfaces with XML: Advances on
User Interface Description Languages, Advanced Visual
Interfaces 2004. Gallipoli.

6. Mori G., Paternò F., Spano L. D.: Exploiting Web Services
and Model-Based User Interfaces for Multi-device Access to
Home Applications. Kingston, Canada, DSV-IS 2008, Springer
Verlag, LNCS 5136, pp.181-193.

7. Oasis standard: Web Service Business Process Execution
Language, April 2007.

8. Paternò, . F. , Santoro, C. , Spano, L. D., Model-based
Design of Multi-Device Interactive Applications based on Web
Services, Proceedings INTERACT’09, Springer Verlag.

9. Paternò F., Santoro C., Mantyjarvi J., Mori G., Sansone S.,
Authoring Pervasive MultiModal User Interfaces, International
Journal of Web Engineering and Technology, Inderscience, 4(2)
pp.235-261, 2008.

10. Paternò F., Model-Based Design and Evaluation of
Interactive Applications, Springer Verlag, 1999.

11. Song, K., Lee, K.-H., 2008. Generating multimodal user
interfaces for Web services, Interacting with Computers,
Volume 20, Issues 4-5, September 2008, Pages 480-490

12. Spillner, J., Braun, I., Schill, A., 2007. Flexible Human
Service Interfaces, Proceedings of the 9th ICEIS conference,
pp.79-85.

13. Vermeulen J., Vandriessche Y., Clerckx T., Luyten K. and
Coninx K., Service-interaction Descriptions: Augmenting
Services with User Interface Models, Proceedings EIS 2007,
Salamanca, Springer Verlag.

90

