
Reusable Structures in Task Models

I.M. Breedvelt-Schouten+, F.D. Paternò*, C.A. Severijns+

 (+)Baan Research, Baan Company
N.V.

P.O. Box 250
6710 BG, Ede, The Netherlands
{ibreedvelt, cseverijns}@baan.nl

(*)CNUCE - C.N.R.
Via Santa Maria 36
56126 Pisa, Italy

f.paterno@cnuce.cnr.it

Abstract
Task Analysis is a well-known approach which has been used to analyse the de-
sign of existing applications. Recently there is an increasing interest to apply
this type of technique to the design and development of new applications, too.
However if user interface designers want to apply task modelling on a larger
scale, to industrial size case studies, the possibility of reuse is useful for saving
time and effort. In this paper we present an approach for designing reusable
structures in task models that allows designers to focus more clearly on the
needs of the user and that speeds up the application design.

Keywords: Task Models, Reuse, Industrial Applications of Formal Methods

Introduction
In this paper we present the first results of a co-operation between the User-centred
Design Group at CNUCE and Baan Company on new methods for the design of user
interfaces. In this research we have considered ConcurTaskTrees [11], a diagram-
matic notation to describe hierarchical task models, which allows designers to enrich
the traditional functional specification by including the user's view of system func-
tionality. And we have investigated its use for new applications of interest for Baan
Company.
There are various reasons for choosing a task-based approach. This type of approach
allows designers to focus on high-level semantic oriented aspects and developers to
obtain system functionalities which reflect the user’s view of these. Thus, while inter-
acting with the user interface of an application designed with a task-based approach,
the user will easily understand how to use the system. This is because: i) the user in-
terface provides actions which can be immediately mapped to logical actions, ii) the
temporal relationships between the actions in the user interface reflect those defined
in the task models, and iii) all implementation aspects which are less comprehensible
for the user are hidden. Another aspect is that task modifications can be more easily
implemented: in Interactive Systems designed by task-driven approaches it is easy to
locate which part of the system should be changed, when support of some tasks is re-

moved, added or modified, because it is possible to create a direct correspondence
between tasks and the software components used to perform them.

Baan Company is one of the major vendors of solutions for Enterprise Resource Plan-
ning. These solutions are implemented by customising a large generic software pack-
age, that is developed by Baan Company itself and consists of approximately 5×103

applications ranging in functionality from simple editing of data to complicated plan-
ning tools. In order to manage this complexity it became soon important to achieve a
relevant issue in the design and development of user interfaces: the possibility to re-
use good design solutions of recurrent problems in dialogue specifications to save
time and effort.

ConcurTaskTrees is a notation for specifying task models which has been developed
to overcome limitations of notations previously used to design user interfaces, such as
UAN [8]. Its main purpose is to be an easy-to-use notation that can support the design
of real industrial applications, which usually means applications with medium-large
dimensions. It can solve the problem of many notations, such as Interface Object
Graph [5], which, while they are effective for simple limited examples, show low
scalability for specifications of real case studies, thus soon becoming difficult to in-
terpret.
The ConcurTaskTrees notation provides a graphical representation in a tree-like form
of a hierarchical decomposition of tasks. A set of operators, mainly taken from the
LOTOS [9] notation, is used to indicate the temporal relationships among tasks such
as iteration, sequentiality, concurrency, disabling, and recursion. We used it to design
various solutions for different problems. After performing several exercises we have
realised that an interesting element is the possibility to identify specific task patterns
in the tree-like structures describing task models which can be reused across different
applications which, in some points, raise the same requirements.
One further possible advantage of task-driven user interface development, where a
direct correspondence is created between software components and tasks to support,
is that this correspondence can be exploited for software reuse purposes as well. This
possibility has not yet been investigated in current task-driven proposals. In this paper
we do not discuss this aspect since we want to focus on the possibility of reusable
structures in task models for design purposes. We leave the topic of reusable task
structures for supporting the implementation phase for a further paper because it re-
quires different considerations.
In this paper, after a short discussion of related work, we introduce the ConcurTask-
Trees notation which we use for building task models and we introduce the concepts
of reusability relevant to the approach presented. Then we introduce examples of pos-
sible reusable task structures and one application designed with the support of a task
template. We conclude with some remarks and indications for future work.

Related Works
A different task-oriented approach is proposed by Wilson et al. with Adept [17]. In
their proposal they address the design of a task model, an abstract architectural model,
and a related implementation. However, this is obtained mainly by the skill of the de-
signer with limited support from predefined rules incorporated in an automatic tool.

In model-based approaches to user interface design and development there are some
proposals (such as Trident [2] and Mastermind [15]) which consider task specification
as an abstract model. However these proposals usually do not consider an explicit ab-
stract architectural level moving directly from the task level to the implementation
level. Similarly they do not consider reuse aspects in their approach.
UAN supports hierarchical specifications and has operators to express temporal rela-
tionships among tasks. However we found it has some limitations: first, it has a tex-
tual specification which makes it difficult to read and interpret (for example to find
cross-references among tasks). It also provides limited support for deriving a software
architecture, as its main purpose is to specify only the externally perceivable behav-
iour of the user interface by associating tables indicating above all user actions and
system responses. As a consequence, it is oriented to provide low-level specifications
with many details and is not very well suited for applying reuse.
In the field of formal methods for human-computer interaction there are approaches
which consider task abstraction aspects [6, 13]. In these approaches the goal is usually
oriented to analyse the dialogue of existing systems rather than giving the possibility
to build an architectural specification which can be used for prototyping purposes as
well. Other approaches to task-driven design are in [18, 19], but they mainly focus on
presentation-related aspects rather than analysing the dialogue of Interactive Systems.
The analysis of current task-oriented approaches highlights the lack of proposals sup-
porting design reuse. This is a relevant issue given the increasing complexity of Inter-
active Systems. Reuse has already been recognised as such in other areas of
application design, for example, in object-orientation [7].

ConcurTaskTrees
It is becoming increasingly common for the various specialists (developers, designers,
psychologists, application domain experts) involved in the design process to discuss
the tasks that the system should support. To this end it is very important to have nota-
tions to develop task specifications so that:

• they are easy to understand and use, thus improving communication among peo-
ple discussing the design;

• they are able to structure the large sized specifications which are developed in
industrial applications;

• their semantics are precisely defined to avoid ambiguities in the communication.

 When choosing the notation we found that some important features have to be sup-
ported:

• hierarchical logical structures which were introduced by GOMS have proved to
be a useful way to represent task models because they allow designers to reason
about the design at different abstraction levels and they support the refinement
design process better;

• to be able to express a wide variety of temporal relationships since modern user
interfaces are characterised by highly interactive behaviours in multimedia envi-
ronments;

• to handle the complexity of task models for industrial applications, it is thus im-
portant to be able to express relevant relationships precisely and to have informa-
tion on more detailed aspects in an interactive way.

 A task defines how the user can reach a goal in a specific application domain. The
goal is a desired modification of the state of a system or a query to it.
 We can identify four types of tasks depending on their performance allocation:

• user tasks are completely performed by the user, they require cognitive or physi-
cal activities without interacting with the system. One example is when the user
reads a list of flights satisfying some constraints and decides to select one of them
for his/her journey. More generally, we say that user tasks are associated with
some processing performed by the user on information received from the envi-
ronment.

• application tasks are completely executed by the application. They receive in-
formation from the functional core and they can supply information to the user.
They are activated by the application itself. For example, compiling a program
and sending messages when some errors are detected, or receiving network mes-
sages and displaying them.

• interaction tasks are performed by user interactions with the application. These
interactions are activated by the user. Examples are editing a diagram or formu-
lating a query to a data base.

• abstract tasks are tasks which require complex actions, though how to allocate
their performance has not yet been decided.

In the task specification the types of tasks are presented either by different icons or
different geometric shapes as in Figure 1.

The temporal relationships among tasks are expressed by extending the operators of
LOTOS, which is a concurrent notation. This allows us to describe concurrent tasks,
unlike the GOMS proposal which uses a hierarchical task decomposition only con-
sisting of sequential tasks. It is possible to specify both synchronous and asynchro-
nous communication among tasks. Tree-like structures combined with operators to
indicate temporal relationships among tasks at the same level allow designers to
specify more complex behaviours than those associated with basic LOTOS operators.

The operators that we use to describe the temporal relationships are:
T1 ||| T2 interleaving: the actions of the two tasks can be performed in any

order;
T1 |[]| T2 synchronisation: the two tasks have to synchronise on some actions

in order to exchange information;
T1 >> T2 enabling: when the first task is terminated then the second task is

activated;
T1 []>> T2 enabling with information passing: when task T1 terminates it

provides some value for task T2 besides activating it;
T1 [] T2 choice: when it is possible to choose between two tasks to perform;
T1 [> T2 disabling/deactivation: when one action from the second task

occurs the first task is deactivated;
T1 [][> T2 disabling/deactivation with information passing: when one action

from the second task occurs the first task is deactivated while
passing some value;

T1* iteration: the task can be iterated many times;
T1(n) finite iteration: the task is performed n times.

User Task

Abstract Task

Interaction Task

Application Task

Figure 1: The two possible presentations of Task types.

[T1] optional task: the performance of this task is optional. It is not
mandatory to perform this task

Recursion is obtained by allowing the use of a task within its own specification. This
means that in the task subtree, which defines a given task, we can find again its oc-
curence.

Reusability
Reusability is an important issue in every stage of application development. Object-
orientation is a well-known approach for analysing, designing and implementing ap-
plications which simplifies the reuse in each of these three phases of the software de-
velopment process, [1, 14]. Many reusable structures or patterns that occur in object-
oriented systems, have been documented [7, 3]. By using these patterns developers
can build more easily upon the work of others. If similar structures are available for
task models, this would enhance the development of task models, too.
We distinguish two possible types of reuse: design reuse and software reuse. While
software reuse indicates the possibility to use the same pieces of implementation in
different contexts, design reuse means that we can identify pieces of task specifica-
tions which can be used in various applications. Thus, whenever designers realise that
the problem they are considering is similar to one, which has already been found, and
solved, then they can immediately reuse the solution previously developed. This can
be done by applying the related task specification which is represented by a task pat-
tern in a ConcurTaskTrees specification.
The hierarchical structure of this specification has two advantages:

i) it provides a large range of granularity allowing large and small task struc-
tures to be reused,

ii) it enables reusable task structures to be defined at both a low and a high se-
mantic level.

Furthermore, it is possible to associate the tasks defining the template with a set of
interactors, which define the architecture of the application [12]. This correspondence
can be used to ease and speed-up the development process.
An additional advantage of using task patterns is that they help to make the task speci-
fication easier to read and interpret since it is possible to indicate their names if they
occur in the lowest part of the task tree rather than specifying them completely. This
makes the specification more compact and legible since some repetitive small specifi-
cations, which do not add new conceptual aspects, can be indicated very briefly. Ex-
amples are the modal dialogues controlling the printing of information or the closing
of a session with the optional possibility of applying the modifications performed.
However, defining templates is not an easy task. There are at least two basic prob-
lems:

i) to identify the characteristic situations which can occur in different applications,
ii) to identify the information that should be used to define instances of these dia-
logues patterns.

Reusable Structures in Task Models
While analysing and (re-)designing parts of the Baan software, we found several tem-
plates in our models. In this section we will discuss four of the most common tem-
plates that we found.

i) A Multi-values Input Task appears in every application in which the user edits
various values until (s)he decides to submit them. For this behaviour we found
that the recurring structure is the one shown in Figure 2. We first have a distinc-
tion between the Edit values task and the Submit task. The second task must be
able to disable the editing activities. Editing is performed by the interleaving of
the editing of the various attributes. Each attribute editing is iterative because the
user can decide to change the value before submitting it. As a result, all sub-tasks
can be performed any number of times.
An example of an instance of the Multi-value Input task is the description of an
input to a database which allows the user to provide, for example, name, surname
and telephone number of each element.
We can note that this task template is independent of the number of attributes to
be edited because this element does not change its global behaviour.

ii) A Search Task is a very common task template, because it allows a user to search

for specific information. Searching is not only «locating» data by using one query
statement, it is also a navigational way of searching in which the next query is
based upon the results of the previous one; this is called refinement. The only as-
pect that changes during refinement is the information used by the user to decide
how to specify the next query.
The basic semantics of this task (see Figure 3) are: the user indicates what data to
search for via a query statement entry, the query manager is activated via submit-
ting the query to search for the matching data, the results are shown and finally the
user is able to refine his/her query results. These results will be used as new input
for the next search. More specifically, the user can decide, depending on the result
of the previous query, to enter a new formulation of a query which probably will
provide the desired information without additional disturbing elements. To de-
scribe this activity we introduced explicitly an additional user task (Decide re-

Multi-value Input

Edit attribute 1* Edit attribute 2 * Edit attribute N *

Edit values Send Input

 ||| |||

[>

Figure 2: A Multi-value Input template

finement) which receives information from an application task (Show data set ...)
and produces input for the next interaction task (Refine query) which requires the
same user interactions as the Define Query task. As you can note the application
tasks used are the same to provide both the result of an initial query and the query
result deriving from a user refinement.
This search task can be applied in many applications where searching is needed,
like search engines, database query applications and file managers.

iii) An Evaluation Task is a more complicated template (see Figure 4). It consists of
two activities, selection of the data to be evaluated and the evaluation itself,
which can be repeated until the user decides to stop. The evaluation consists of
five sub-tasks: first the user selects the evaluation type. Next the required data
structures for this type of evaluation are created by the application. Then the user
can edit the parameters that are needed during the evaluation until (s)he decides
to start the calculations required for the evaluation. Finally, the results of the
evaluation are shown. Note, that the tasks Select Data and Evaluate Data are syn-

chronised, because the selection is directly influencing the types of evaluation
that can be applied. An example is an information system which gives the user
the possibility to get information about houses and evaluations about them (pric-
ing, history, mortgage, sizes, etc.). The user can select a set of houses and concur-
rently the evaluation type. After selecting the evaluation type, it is possible to
specify the parameters, like mortgage-rates, room-sizes, and taxes. Finally, re-
sults are shown. In some cases, depending on the type of evaluation requested,
some houses cannot be selected, because the related information is not available.

Refinement
Search *

[>

[]>>

Close

Search

Define Query

Enter Query
parameters *

[> Submit
Refine
Query

Perform
Query

Show
& Refine *>>

Show data set
of Query
Results

[]>>

Close
Refining

[>

[]>>Decide
Refinement

Enter Query
parameters * [>

Submit

Figure 3: A Search Template

iv) A Recursive Activation Task template captures the recurrent situation in many
dynamic modern user interfaces which makes available an initial task whose
main purpose is to allow the user to activate new instances of another task. An
example can be a word processor which, whenever a specific interaction tech-
nique is selected, allows the editing of a new file other than maintaining the pos-
sibility to edit files previously opened. A generic example of use of this template
is shown in Figure 5, where the double occurrence of the abstract Handle set of
Objects task indicates this type of recursion. In the example we have an applica-
tion for handling a set of objects. If it is not closed, it allows the user to select
and/or delete various objects until the Start Object task is performed, which
means that the presentation for editing the selected Object is activated. The recur-
sion ensures that the Handle Objects task is available again. As a result of this re-
cursion, the user can create several instances of the Handle One Object task by
performing the Handle Objects task.

Editing

Close

Select *
Data

Evaluate
Data*

Select
Eval.
Type

Specify *
Parameters

Start
Evaluation
Calculation

Show[]>>

[]>>

[>

Calculate
Create
Evaluator

[]>> Start >>

 |[]|

[>

Calculate
Evaluation

Evaluate Data
in Company

Evaluate

Figure 4: An Evaluation Task template

As illustrated by these examples, these templates are similar to patterns in object-
oriented analysis and design [7]: they give a problem definition, describe a solution to
this problem, and they can occur regularly in many applications.

Using Templates to Design an Application
The goal of most commercial companies is to sell as many products as possible. The
activities of many departments within a company are aimed at achieving this goal. For
example, the main activity of the sales department is to accept orders from customers
and to provide other departments with the information required to deliver the prod-
ucts. Nowadays many companies support their activities, including those of their sales
department, with an automated system for Enterprise Resource Planning (ERP).
Amongst others, such an ERP system maintains information on the sales orders that
have been and are being processed by the company. Sales employees have the task to
start the processing of an order by entering new sales order information into the ERP
system. They can also change existing sales order information when needed. In this
section we will show how we can obtain an application for this task using templates,
in this case the Recursive Activation Task and the Multi-Value Input templates.
The starting-point of the edit sales order task is the set of sales orders. The employee
can add a new sales order, or delete or open an existing one. Once a sales order has
been created (opened), the following data can be entered (modified): the order-
specific data, the data related to the customer and the products, each product on its
own order line. Regularly, a sales employee needs to access information on several
sales orders simultaneously, e.g. while the sales employee is entering a sales order for
customer A, customer B calls and wants a change in his/her sales order. This implies
that a sales employee should be allowed to activate multiple instances of the sales or-
der entry task. Therefore, we conclude that we can use the Recursive Activation Task
Template as a starting point to construct our "Order Handling" task model. By re-
placing the word "Object" in the template by "Order" we obtain the part of the task
model of Figure 6 shown in grey. The left part of the task model implies that the user
can select orders until s/he decides to interrupt this selection by deleting or starting
the selected orders or by starting a total new order.

Object Handling

Handle set of
Objects

Close[>

Select and/or
delete

[>
Edit
object(s)

Start object Handle[]>>

Handle set of
Objects

Handle One
Object|||

Figure 5: A Recursive Activation Task template

We still need to extend this model for specific actions on a sales order: entering order
specific information (e.g. an order date), selecting the customer, entering the order
lines and selecting the products for the order lines. For this purpose we can use the
Multi-value Input task template.

Select
Order(s)*

Delete

Start
New
Order

Start
Existing
Order

Edit
Attributes *

Select
Customer *

Edit Order
Lines *

Select Customer
from list

Enter Order
Lines
Directly

Edit One
by One

Make
Selection*

Enter
Customer
Directly

Close

OK Cancel

Edit Order
Line
Attributes*

Select
Item*

Enter Item
Selection
Directly

Select Item
from list

Make
Selection*

Close

[>

Close

OK Cancel

Close

OK Cancel

[>[>

[]

[]

[] []

 | | |

[>

[]>>

Order Line
Handling*

[> Close

Order Handling
(abstract)

Select and/or
delete Orders*

Select One
Order Line []>>

Apply Cancel[]

Edit One
Order Line

 | | |

Do

[]

 | | |

[] []

Edit Order(s)

[>

Edit 1
Order

Handle Orders
(abstract)

 | | | Handle One
Order

{0..n}

Edit
Order(s)

Handle

Handle Orders
 (abstract)

[>

OK Cancel[]

New Existing[]

[>

Figure 6: The task model that results from applying the Recursive Activation Task
template to Orders and extending it with application specific tasks.

The activation of the Edit One Order task is envisioned in the user interface by Figure
7. Note that the sales orders are indicated via numbers, which is a common practice in
many companies. The order lines can be edited directly in the table of the Order win-
dow as shown in Figure 8, or the user can open another dialogue to edit the order lines
in a separate dialogue for order lines (see Figure 9). The difference between ‘enter
selection directly’ and ‘select from list’ is introduced to indicate that the user respec-
tively knows the data to select by heart or needs extra support by selecting correct
data from an existing list/set.
As a concluding remark we note that we can use the Recursive Activation Task Tem-
plate in a similar manner to manage some other data types, such as editing production
orders, customers, and inventories.

Figure 7: The set of orders, from which a user can select the orders.

Figure 8: Two Edit Order tasks are open.

Figure 9: The Edit Order Lines dialogue in an Edit Order Task.

Conclusions
In this paper we have shown how it is possible to recognise and define reusable
structures in task models. These reusable structures enable and encourage designers to
focus more on the needs of users by providing high-level, semantics-oriented ele-
ments.
The need for them was raised by work on using task models to design industrial ap-
plications in the business area: these are usually large applications where similar
problems occur often in different parts of the design. We found reusable task struc-
tures useful to speed-up the process of building task models for discussing design so-
lutions because they incorporate immediate solutions for recurrent problems.
Currently we are working on extending the set of reusable structures in task models.
We consider the set of templates presented here as a good starting-point for further
investigation of reusability in task models. We plan to support the use of templates in
a semi-automatic tool. In addition, we are investigating the possibility of obtaining
reusable interactor networks: the software components, associated with the specifica-
tion of tasks templates which can be used to describe similar situations in different
contexts, in order to directly include them in different software applications. Thus, the
software developer has the advantage of using a high-level, more immediate to under-
stand, specification of software architectures which can be reused.

References
1. G.Booch, «Object-oriented Analysis and Design», Benjamin/Cummings

Publ. Comp., 2nd ed., 1991, pg. 327.
2. F.Bodart, A.Hennerbert, J.Leheureux, J.Vanderdonckt, "A Model-based ap-

proach to Presentation: A Continuum from Task Analysis to Prototype", in
Proceedings DSV-IS’94, Springer Verlag, pp.77-94.

3. F.Buschmann, R.Meunier, H.Rohnert, P.Sommerlad, M.Stal, «A System of
Patterns: Pattern-oriented Software Architecture», Wiley, 1996.

4. S.Card, T.Moran, A.Newell. "The Psychology of Human-Computer Interac-
tion", Lawrence Erlbaum, Hillsdale, N.J., 1983.

5. D.Carr, «Specification of Interface Interaction Objects», Proceedings ACM
CHI’94, pp.372-377.

6. R.Fields, P.Wright, M.Harrison, «A Task-centred approach to analysing hu-
man error tolerance requirements». Proceedings Requirements Engineer-
ing'95, pp.18-26.

7. E.Gamma, R.Helm, R.Johnson, J.Vlissides, «Design Patterns: Elements of
Reusable Object-Oriented Software», Addison-Wesley, 1995.

8. R.Hartson, P.Gray, «Temporal Aspects of Tasks in the User Action Nota-
tion», Human Computer Interaction, Vol.7, pp.1-45.

9. ISO - Information Processing Systems - Open Systems Interconnection -
LOTOS - A Formal Description Technique Based on temporal Ordering of
Observational Behaviour. ISO/IS 8807, ISO Central Secretariat.

10. I.Jacobson, "Object-oriented Software Engineering - A use case driven ap-
proach", Addison Wesley, 1992.

11. F.Paterno', C.Mancini, S.Meniconi, "ConcurTaskTrees: A Diagrammatic
Notation for Specifying Task Models", Proceedings Interact’97, Chap-
mann&Hall, Sydney.

12. F.Paterno', C.Mancini, S.Meniconi, "Understanding Tasks and Software Ar-
chitecture Relationships", CNUCE Internal Report, December 1996.

13. P.Palanque, R.Bastide, Verification of an Interactive Software by Analysis of
its Formal Specification, Proceedings INTERACT'95, Lillehammer, June'95.

14. J.Rumbaugh, M.Blaha, W.Premerlani, F. Eddy, W. Lorensen, «Object-
oriented Modeling and Design», Prentice-Hall, 1991, pg. 282.

15. P.Szekely, P.Sukaviriya, P.Castells, J.Muthukumarasamy, E.Salcher, "De-
clarative Interface Models for User Interface Construction Tools: the Mas-
termind Project", Proceedings EHCI'95, Chapmann&Hall, August '95.

16. D.Schmidt, M.Fayad, R.Johnson, «Software Patterns», Communications of
ACM, October 1996, pp.36-40.

17. S.Wilson, P.Johnson, C.Kelly, J.Cunningham, P.Markopoulos, «Beyond
Hacking: a Model-based Approach to User Interface Design, Proceedings
HCI’93, Cambridge University Press.

18. A.Sutcliffe, P.Faraday, "Designing Presentation in Multimedia Interfaces",
Proceedings CHI'94, pp.92-98.

19. A.Sears, AIDE: A step toward metric-based user interface development
tools. Proceedings of UIST'95. ACM Press, pp.101-110.

