
Customizable Automatic Detection of Bad Usability Smells
in Mobile Accessed Web Applications

Fabio Paternò, Antonio Giovanni Schiavone, Antonio Conte

CNR-ISTI, HIIS Laboratory

Pisa, Italy

{fabio.paterno, antonio.giovanni.schiavone, antonio.conte}

ABSTRACT

Remote usability evaluation enables the possibility of

analysing users’ behaviour in their daily settings. We present

a method and an associated tool able to identify potential

usability issues through the analysis of client-side logs of

mobile Web interactions. Such log analysis is based on the

identification of specific usability smells. We describe an

example set of bad usability smells, and how they are

detected. The tool also allows evaluators to add new usability

smells not included in the original set. We also report on the

tool use in analysing the usability of a real, widely used

application accessed by forty people through their

smartphones whenever and wherever they wanted.

Author Keywords

Remote Usability Evaluation; Web Mobile application log

analysis; Usability Bad Smells.

ACM Classification Keywords

H.5.2 User Interfaces: Evaluation/methodology

INTRODUCTION
The World Wide Web is an indispensable global means of

communication for people, companies and public

organizations. Building easy-to-use Web applications has

become a crucial element for anyone who wants to promote

services or convey information. This need is made even more

acute by the widespread use of mobile devices, which

although still supporting the Web have also changed the way

people make use of applications. Currently, mobile devices

are the most often used platforms to perform recreational

activities (such as performing search queries [12] or enjoying

multimedia content), and their usage in business activities is

consistently increasing [8] as well.

For several years, researchers have conducted studies about

the issue of analysis and improvement of Web application

usability, proposing several tools, methodologies and

techniques for this purpose. In particular, automatic usability

evaluation tools [21] have been considered with the aim of

reducing the time and costs involved in usability analysis,

freeing evaluators from repetitive and tedious tasks, and

allowing assessments to be scaled up without increasing the

evaluation costs excessively. Automatic Web usability

evaluation tools can be classified into two main groups: those

that use Web pages’ source code (i.e. their structure and/or

content) as the data source for usability issue detection, and

those that focus on actual user interaction data analysis. The

first group includes some commercial tools such as Google’s

Mobile Friendly Test Tool [13] or Bing's Mobile

Friendliness Test Tool [4]: starting with the structure of the

Web page, these tools try to infer its usability in the specific

context of navigation performed through mobile devices. For

the latter group, usage data can be retrieved from server logs

(mainly containing the chronological sequences of visited

Web pages) or by client-side logging of users’ activities

while they are browsing (thus recording both the sequence of

visited Web pages and the infra-page interactions, such as

clicks, scrolling, etc.).

The rise of devices such as smartphones and tablets has led

to the wide adoption of types of user interactions, which are

significantly different from those on desktop devices. These

differences arise from the many possible contexts of use,

from technical limitations of mobile devices (e.g.

connectivity, small screen size, different display resolutions,

limited processing capability and power), and from the way

in which users interact with them (for instance, some users

prefer to interact with smartphones with both hands, others

prefer to interact with a single hand [5]). Variations in each

of these factors (e.g. the change of the screen size [28]) can

therefore lead to different perceptions of usability.

In order to better understand and analyse these types of user

interactions it is therefore necessary to define criteria and

develop new evaluation tools to ensure proper usability

evaluation even in such mobile contexts. In this paper, we

present a method for automatic detection of usability issue

indicators (also known as “Bad Usability Smells”) in mobile

access to Web applications. This method is supported by

Mobile Usability Smell Evaluator (MUSE), a new proxy-

based Web usability evaluation tool that is able to record user

behaviour while interacting with any Web application

through any type of browser-enabled device. The

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.

Copyrights for components of this work owned by others than the author(s)
must be honored. Abstracting with credit is permitted. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from
Permissions@acm.org.

MobileHCI '17, September 04-07, 2017, Vienna, Austria
© 2017 Copyright is held by the owner/author(s). Publication rights

licensed to ACM.

ACM ISBN 978-1-4503-5075-4/17/09…$15.00

http://dx.doi.org/10.1145/3098279.3098558

identification of usability issues is carried out through an

algorithm for identification of specific interaction patterns:

recorded user interactions are compared with a repository of

interaction patterns that indicate the potential presence of

usability issues.

The paper is structured as follows. After discussion of related

work, we introduce the concept of “bad smells”, with special

regard to those related to usability aspects. Afterwards, we

define six different user behaviours that may indicate the

presence of bad usability smells in mobile environments.

Then, we describe our bad usability smell detection method

and tool, illustrating the overall architecture, a language

developed to represent the bad smells, and the detection

algorithm that has been designed and implemented. Finally,

we report on the results gathered through a user test carried

out in order to evaluate the effectiveness of the usability

evaluation tool, and then draw some conclusions with

indications for future work.

RELATED WORK

The advent of mobile technology introduced new usability

issues. Thus, usability evaluation methods need to be revised

in order to address them. For example, one possible approach

(Keystroke Level Model (KLM) [7]) is to define a model in

order to predict user performance and usability issues, and it

has been extended to estimate interactions on touch-screen

interfaces as well [29].

Another approach is the analysis of the navigation paths

followed by a user while performing some specific task in a

Web site, and its comparison with the envisioned optimal

navigation path for that task. The users’ navigation paths can

be obtained by server log analysis or logging client-side user

interactions. One method using server logs for analysing user

behaviour for evaluating Web site usability [11] compares

users’ navigational paths with optimal ones in order to detect

possible usability issues. Unfortunately, server logs do not

provide information related to users’ behaviour within the

Web pages, and hence information about which usability

issues they may encounter while interacting with the Web

page elements. One contribution on tracking user activity on

Web Pages was UsaProxy [2]: in this tool, user activity

recording was limited to the events generated via mouse or

keyboard, and no processing or comparison between the

recorded data was performed.

Navigation paths comparison is usually performed by

applying some metrics. One of the metrics used for this

purpose is a non-Euclidean distance measure called the

Sequence Alignment Method (SAM) [18]. A solution that

has considered SAM is WUP [6]. This tool allows the

comparison between actual user behaviour and an optimal

sequence of actions through a specific implementation of the

SAM method. However, deriving usability issues from this

SAM-based analysis has proven rather difficult. A similar

tool is WELFIT [30], which uses a JavaScript that must be

included manually, and registers user interactions as client-

side event logs. By analysing the logs, the tool is able to

identify recurring interaction usage patterns. The analysis is

performed through a labelled digraph representing the user

interactions. However, the detection method has shown to be

able to detect only limited usage patterns. In addition, the

tool was focused on monitoring usability in desktop

environments, ignoring the mobile ones. Lettner et al. [22]

have proposed another approach: they developed a solution

for automatically extracting and grouping interaction

sequences from users in mobile environments. This solution

requires the development of mobile apps through the use of

a framework able to annotate the source code and thus define

some apps’ states already during the development phase.

Thus, the proposed framework only automates clustering and

classification of interaction sequences, but it does not

provide functionalities for automatic detection of suspected

usability issues.

In recent years, a different approach has started to be

considered in the field of usability evaluation: the main idea

is to define and formalize structures, user behaviours and

other types of anomalous data that serve as clues (“Bad

Smells”) for possible usability issues, and verify their

potential presence. The concept of "Bad Smell" was

proposed by Fowler and Beck [9] and it comes from the field

of source code refactoring. The main idea is that an expert

should be able to “to look for certain structures in the code

that suggest the possibility of refactoring”. In this regard,

some metrics have been defined, for example in Java source

code [23]. The usage of refactoring techniques has been

extended not only in order to improve code quality, but also

to improve other aspects such as usability. A proposal to use

the concept of “Bad Smell” to enhance the usability of Web

applications [10] suggested utilizing refactoring techniques

not only to improve “internal quality attributes” (for

instance, database performance) but also to improve external

quality attributes, including usability. These authors

proposed a first categorization of “Bad Smells” in two broad

groups, “Navigation and Presentation”. An attempt to

automatically detect "Bad Usability Smells" (i.e. “Bad

Smells” underlying the presence of usability issues) [15]

consists in a detection tool composed of three different

modules. The Threats Logger is able to register higher-level

interaction events and to process them to generate a list of

“usability threats”. The Bad Smells Finder is a server-side

application that receives usability threats and stores them for

analysis, and the Bad Smells Reporter is a module able to

retrieve the stored threats and displays the resulting bad

smells. Unfortunately, this approach requires manual script

installation, is based on fixed a priori assumptions in terms

of possible threats, and is not particularly structured.

Recently, the same authors proposed a similar tool [16],

which also allows a “real time” reporting of detected

usability smells. Unfortunately, in certain circumstances this

features can lead to a “flickering” reporting (i.e. during the

flow the user interaction, the tool can temporarily and

mistakenly recognize parts of user behaviour as a usability

smell), and it does not allow to visually analyze the user

interaction.

A similar tool for automatic detection of "Bad Usability

Smells" is AutoQUEST [17] [19], which also records user

actions through a JavaScript that must be included manually.

Afterwards, the data are processed in order to generate Task

Trees representing the recorded user interactions. The

analysis of the differences between the expected occurrences

and those generated in the Task Trees can lead to the

detection of four distinct Bad Usability Smells: “Missing

feedback”, “Important task”, “Required inefficient actions”

and “High website element distance”. However, in this case

a manual script installation is required, and the definition of

Bad Usability Smells is fixed. Moreover, the generation of

Task Trees can be a time-consuming process, and does not

allow usability experts to perform real-time analysis.

Another example of using task models to support analysis of

logs interactions was presented in [26], in which the task

model represented how the tasks were expected to be

accomplished and the logs the actual performance, so that

deviations from the task model pointed to potential usability

issues. Task models can provide compact abstract

representations of multiple optimal logs but require some

experience in formal modelling that many usability

evaluators may not have.

W3Touch [24] is a tool that aims to support adaptation by

dynamically modifying the Web page. Firstly, user

interaction data are collected through a JavaScript injected in

the Web page, then visualization techniques are applied to

the recorded data in order to segment the interface and

identify critical components, and finally designers can test

different adaptations and indicate the adaptations to be

applied in specific contexts. One limitation is that the tool

metrics are limited to detecting only: mis-clicks (i.e touches

that miss an intended target) and elements that need to be

zoomed (because they are too small or too close to other

elements). The focus of W3Touch is different from ours: it

aims to define adaptation rules for the dynamic modification

of the structure of the Web page according to some

predefined metrics instead of carrying out an analysis of the

Web application usability. Furthermore, extensions of the set

of adaptation rules in W3Touch requires implementing new

callback handlers (i.e. adding new code), while we propose

a more flexible and less code-dependent approach for

extending our tool: adding the analysis of a new bad smell

just requires its definition in the XML-based specification.

Lastly, another possible approach in this area is performing

long-term Web application monitoring in order to extract

micro behaviours [1]. However, this approach requires

prolonged effort over time and has problems identifying

different accesses by the same users over time, thus its

application is still in its early stages.

To summarise, the application of the concept of bad smell in

the field of usability evaluation is an emerging and promising

methodology, which could simplify and improve the

automatic detection of usability issues in Web applications.

Nevertheless, nowadays a solution that comprehensively

exploits the bad smell-based approach for usability

evaluation of mobile applications with the possibility of

adding new smells without changing the tool implementation

is still lacking. Our proposal aims to fill this gap.

BAD USABILITY SMELLS

Introduction

As previously mentioned, “bad usability smells” can be

viewed as clues about the presence of some usability

problems within an interactive application. In this approach,

the users themselves are the first actors involved in the

process of usability problem detection, since their

interactions are the source generating the bad usability

smells. Detection of user interactions should be carried out

in an unobtrusive manner in order not to affect users’

behaviour while performing their tasks.

The strategies adopted to accomplish tasks can vary from

user to user according to various aspects such as different

contexts of use, different devices, different personality etc.

Even faced with the same usability problem, users may adopt

various strategies (and consequently, user behaviours) to

overcome it. Nevertheless, often there is a small subset of

behaviours that is most frequently adopted by users to cope

with that specific usability issue: this subset is thus the basis

for the definition of bad usability smells. Indeed, various

studies have been carried out aiming to capture such smells

through different methods: for example, [16] and [17] have

focused on how to use them with desktop applications, while

others have considered the identification of such behaviours

for a different purpose, such as supporting adaptation [24].

Defining Bad Usability Smells

In mobile devices, there are some issues caused by the

limited screen size and other touch input issues because of

pointing accuracy [20], thus users can encounter various

problems if the user interface design does not consider these

aspects. A first phase of our work was to establish a set of

usability issues that can be revealed by user behaviour. To

identify this set we have relied on data presented in related

work (e.g. [15], [24] and [26]), information provided by

commercial software such as [14], significant studies

regarding mobile usability [25], and our analyses of various

Web sites and how people interact with them through mobile

devices. At the end of this phase, six different usability issues

have been identified, and are described in the following.

Too Small or Close Elements: this smell is characterized by

the presence of Web page elements that are excessively close

to each other. Too closely positioned form fields, or too small

and / or insufficiently spaced selection buttons are some

examples. To view the content effectively, the user is forced

to perform a series of complex actions in order to resize the

content.

Too Close Links: This problem represents a variant of the

previous case, but it is identified by different user

performance: in fact, it involves the presence of very close

elements whose interaction activates the loading of a new

Web page. An example is a series of links with reduced line

spacing or the submit form button insufficiently distanced

from the other elements. In this case, the users may

mistakenly load another Web page, and are forced to retrace

their steps. Figure 1 shows an example in which the three

links highlighted by black rectangles are so close that wrong

touch selections can easily result.

Distant Content: this problem regards the presence of

related Web page contents arranged too far from each other,

and whose display or interaction is crucial for the proper

execution of some tasks. The user is forced to perform a high

number of upward and downward scrolls.

Too Small Section: a section whose size appears too small

requires specific magnification actions. The corresponding

expected behaviour is to enlarge the section through a double

tap (a gesture that in many mobile devices works as a

shortcut for zooming), and then continue the activity. These

actions allow users to facilitate task performance.

Bad Readability: This smell regards the difficulties

encountered by the user during reading text content. This

case is detected when interacting with blocks of text whose

font size is too small or the spacing is too low. Figure 2 left

shows an example. The user takes a series of actions aimed

at optimizing the font size and / or location of the text block

for ease of reading, such as sequences of pinch and pan

actions but not followed by interactions such as taps because

the task is reading.

Long Forms: This smell is characterized by the presence of

a high number of interactions with input fields, considered

excessive for the purposes of good usability on mobile

devices. An example is in Figure 2 right.

MOBILE USABILITY SMELL EVALUATOR

Architecture Overview

Mobile Usability Smell Evaluator (MUSE) is a new proxy-

based Web usability evaluation tool that is able to record the

behaviour of a user while interacting with any Web

application through either desktop or mobile devices.

The data on user behaviour are collected through a

JavaScript logger injected into the Web page through a proxy

server: thus, the tool is able to record user interactions on

any Web site, and therefore without the need for the owner

of the Web site to manually install the data logging scripts

(see Figure 3).

 The proxy also includes a panel used to indicate the tasks to

perform in that application by the users at the beginning of

the test session. Each user interaction is recorded as a

sequence of events that are generated directly by the user

(e.g. tap, pinch, mousemove, click, etc.) or the browser in

response to user actions (e.g. page resize, mobile device

orientation change). Indeed, our solution is able to analyse

all typical events of touch-based mobile devices (tap and

Fig. 1. Example of Too Close Links Bad Usability Smell

Fig. 2. Example of Bad Readability (left) and Long Form

(Right) Bad Usability Smells

Fig. 3. The MUSE Architecture

double tap, pinch, pan, swipe, press, rotate, orientation

changes) and, for those events for which such information is

relevant, also their direction (e.g. pinch out, pan down, swipe

left). In order to detect typical mobile device events, our

tool's logger exploits the functionalities offered by the

Hammer.js library, which is able to detect such. The tool is

also able to gather information from the smartphone sensors.

For instance, if the user is performing a task through a device

equipped with GPS, the logger will ask to share its

localization: if the user agrees, geo-localization changes will

also be recorded. Moreover, if GPS is not available or its

access is not granted, our tool can access the mobile device

accelerometer in order to infer whether the user is standing

or walking.

The preparation of usability tests is carried out through the

tool backend: usability experts can create and delete usability

evaluation sessions and indicate the tasks that compose them.

The tool includes a usability analyser module, which takes

the data collected during user tests, and provides overview

information on the collected logs (e.g. statistics on browsers,

operating systems, and devices accessed by the users

involved in the test), associated interactive timeline

visualizations, and indications where the bad smells defined

have occurred in such logs. Timelines deriving from

different user behaviour logs for the same task can be

overlapped in order to graphically compare the two distinct

behaviours. It is also possible eventually to share access with

other experts using the tool.

The data are collected anonymously and stored in a database:

subsequently, they can be processed to highlight meaningful

information on all the recorded interactions and possible user

behaviours that seem to indicate usability issues (i.e. bad

usability smells). For each event detected by the logger, the

following information is recorded:

 Event type and, if meaningful, event direction (e.g. Pan

left).

 Event Timestamp.

 If meaningful, the HTML tag on which the event was

triggered and its identifier or, if missing, its XPath.

 If meaningful, the coordinates of the point on the screen

where the event has been triggered.

 Other information depending on the event type (e.g.

characters typed through the physical or virtual

keyboard, GPS coordinates, path of the screenshot of the

loaded page, etc.)

In addition, usability experts have the possibility to define

some custom events (e.g. a click on a particular button or the

transmission of data collected through a specified form),

which have particular relevance for the usability analysis in

a particular case, and which will subsequently be recorded

by the tool in addition to the predefined events.

Bad smell representation

To define within MUSE a functionality for automatic

detection of bad usability smell, a necessary step was to

create a language to specify them. Since user sessions are

recorded as sequences of events, even the bad usability

smells had to be formalized as events patterns. Thus, the

detection of bad usability smells is obtained by checking,

within the recorded event sequences, the presence of event

patterns that represent one or more bad usability smell.

During the development of the smell detection functionality,

we noticed that it is very difficult to detect exactly identical

subsequences of events. The user behaviours can vary in

many, even minimal, ways, so it is impossible to associate a

usability issue with an exact sequence. This aspect led to the

introduction of a series of parameters, intended to facilitate

the detection of similar sequences between them. In order to

introduce some flexibility in the detection mechanism, we

have introduced, in addition to the type of event, a set of

parameters, to facilitate the detection of similar sequences:

 Number of repetitions: the number of consecutive

occurrences of a specified event. When specified, this

parameter can represent a minimal number of

occurrences of the considered event (e.g. at least 5

times), or a quantity not defined. In the latter case, an

indefinite number of repetitions is indicated by the

symbol "*". If it is not indicated, then it means that the

event should occur once.

 Direction: if relevant, it indicates the direction of the event

in question. (e.g. It can be “up” for pan and scroll events,

“out” for pinch events). Also in this case the value of the

direction can be optional, indicating this situation with

the symbol "$”

 Interval: define a time threshold that must be respected.

The threshold represents the maximum time that elapses

between the previous and the current event.

To clarify the concept, let us consider the previously defined

“Too Small or Close Elements” bad usability smell.

Bad Usability Smell Behavioral Pattern

Too Small or Close Elements [*] Pinch(out) + [*]Pan($) + Tap + Focus(in)

Too Close Links [*]Tap + Beforeunload + Pageview + Beforeunload + Pageview

Distant Content [5]Pan(down)

Too Small Section [*]Doubletap + [*]Resize + [*]Pan($) + [*]Tap

Bad Readability [*]Pinch($) + [*]Pan($) + [3]Pan(down)

Long Forms Tap + Focus(in) + [5]Focus($)

Table 1. Behavioral Pattern for each defined Bad Usability Smell.

In the case of this bad usability smell, we expect that the user

will act in the following manner:

 perform an undefined number of pinch out (to zoom in the

Web page).

 perform a series of pan events (for placing the interaction

object at the center of the screen).

 finally perform a tap and consequently trigger a focusin

event (to select / interact with the interaction object).

This behaviour can be translated in the following events

subsequence:

[*] Pinch(out) + [*]Pan($) + Tap + Focus(in)

Likewise, the “Too Close Links” bad smell, which is

associated with the presence of very close elements whose

selection activates the loading of a new Web page, may cause

that users mistakenly load another Web page, and are forced

to go back to look for the right link. In terms of events

sequence, this implies that the user mistakenly taps on a

wrong link (Tap event), consequently the browser unloads

the current page (Beforeunload event) and loads the new one

(Pageview event). Then, the user will recognize that the

wrong page has been loaded and return to the previous one

by using the “back” button of the browser. Thus, the browser

will unload the mistakenly loaded page (Beforeunload event)

and reload the original one (Pageview event). Table 1 shows

the event patterns associated with the defined Bad Usability

Smells. In order to formalize and store the representations of

the other defined Bad Usability Smells, we have chosen to

utilize XML. An example of pattern formalization is shown

in Table 2.

<?xml version="1.0" encoding="UTF-8" ?>

<patternsContainer>

 <pattern>
 <patternName>TooCloseElements</patternName>

 <event>

 <eventTitle>pinch</eventTitle>
 <direction>out</direction>

 <repnumber>*</repnumber>

 <interval>PT1S</interval>
 <targetElement></targetElement> </event>

 <event>

 <eventTitle>pan</eventTitle>
 <direction>left</direction>

 <repnumber>*</repnumber>

 <interval>PT1S</interval>
 <targetElement></targetElement> </event>

 <event>

 <eventTitle>tap</eventTitle>
 <direction>$</direction>

 <repnumber>1</repnumber>

 <interval>PT2S</interval>

 <targetElement></targetElement> </event>

 <event>

 <eventTitle>focus</eventTitle>
 <direction>in</direction>

 <repnumber>1</repnumber>

 <interval>PT1S</interval>
 <targetElement></targetElement>

 </event> </pattern> <pattern>

 </pattern>

</patternsContainer>

Table 2 Example of pattern definition

The advantages in using XML to formalize such patterns are

that their description is easily understandable by both

humans and computer systems, it can be easily extended and

/ or modified and can be validated by defining an appropriate

XSD schema.

Smell detection algorithm

The problem of detecting the presence of bad usability smells

can be reformulated as follows: given a sequence of elements

(in our case event logs), verify if any of their subsequences

correspond to a description of one of the bad smells defined

in XML.

The problem is conceptually similar to the pattern matching

performed using regular expressions (regex), with the

following differences: regular expressions operate on a finite

set of elements, while in our case the possible values in the

logs can be infinite because the time component

(timestamps) is defined by real values. Moreover, regular

expressions only operate on the sequential position of the

individual elements (characters / letters), while in our case

our solution also evaluates the relationships between the

temporal dimension of two adjacent sequences (that is, the

interval between two events must not exceed a certain value).

Due to these differences, we have defined an algorithm that

is based on the following steps: select all events in the logs

that can be the beginning of one of the subsequences of

interest (seeds), and from each of them start to build a

"candidate" subsequence, verifying step-by-step the

consistency with the pattern description (germination). If a

"candidate" subsequence is incompatible with the pattern

description, then it is eliminated (eradication), thereby

reducing the set of "candidate" subsequences.

The algorithm depends on two preconditions: the pattern

description of the subsequences always starts with an event

of a specific type; each log is associated with a

chronologically progressive numeric index.

The algorithm works in the following manner:

1. For each recorded interaction, it partitions the events

that compose the sequence based on their type.

2. It selects the type of event indicated by the first element

of a pattern description, and verifies whether the next

events are compatible with the number of repetitions for

the first event specified in the pattern description. The

resulting elements are the "seeds" from which to build

their candidate subsequences.

3. For all other elements of the pattern description:

3.1. If it relates to an undefined event type, then there

is no particular constraint, and the procedure

moves to the next element.

3.2. If it relates to a defined event type, it filters the

partition by such type. Then, for each event in the

logs considered:

3.2.1. It verifies whether it follows immediately

after the last element of a candidate

subsequence.

3.2.2. It verifies if the event meets the criteria

expressed by the pattern element in question.

3.3. In case there is one (or more) events satisfying the

tests in point 3.2, they are added in the queue to a

suitable subsequence, which is thus confirmed as a

potential candidate.

3.4. The candidate subsequences referred to in the

current iteration for which compatible patterns

have not been found are eliminated, thus reducing

the number of candidate subsequences

4. After all iterations, the candidate subsequences

remaining are those that indicate the presence of a bad

usability smell.

The bad smell detection algorithm can be applied to any log

immediately after the end of the recording session.

Bad smell visualization

MUSE provides usability experts with a backend where they

can graphically navigate the stored data in order to

reconstruct the recorded user interactions. Each user

interaction is represented as a sequence of events that have

been generated directly by the user (e.g. tap, pinch,

mousemove, click, etc.) or the browser in response to user

actions (e.g. page resize, mobile device orientation change).

Each sequence is graphically represented as a timeline [27]:

every event constituting the sequence is graphically

represented by its own box containing the event type and an

icon that illustrates in a simple way both the event type and,

when meaningful, the event direction. Figure 4 shows an

example of how a log is visualized as a timeline, and how a

bad smell is highlighted in it.

Furthermore, the box for each event of type "Pageview" (i.e.

an event triggered after loading a new Web page) includes a

miniature of the loaded page: clicking on it brings up a

screenshot of the page.

 This is an important feature in the design of our timelines

since it enables the usability expert to have a better

understanding of the actual user interface accessed at that

specific time, and thereby better analyse the corresponding

sequence of events performed.

During the analysis, usability experts may have the backend

highlight the bad smell detected, selecting both the bad smell

type and the set of recorded user interactions to consider. The

events which led to the recognition of one or more bad smell

are highlighted in red (as shown in Figure 4): hovering over

the highlighted part of the time axis brings up a small tooltip

indicating which potential usability issue has been detected.

In our example the highlighted sequence suggests that the

user had problems in the interaction with the Web page due

to elements being too small or too close to each other, thus

finding the need to zoom the page. Then, by clicking on the

bar underlying the highlighted events, it is possible to call a

popup that shows these events positioned directly on the

screenshot of the page, visually reproducing the user

interface design responsible for the usability issue. This

functionality allows the tool to make even clearer the part of

the user interface that led to the bad usability smell (as shown

in Figure 5).

EMPIRICAL FEEDBACK

In order to provide an initial validation of our method we

have considered a case study involving a widely used Web

site not developed by us. We first asked forty people to

access it to perform some indicated tasks through their

smartphones whenever and wherever they wanted. Then, we

showed the results provided by our tool to eight usability

experts to assess whether they were useful in identifying

potential usability issues.

User Test Participants and Methodology

In order to verify the effectiveness of our approach, we firstly

created a usability evaluation session, composed of four

different tasks, regarding the English version of the Web site

of “Autostrade per l’Italia” [3], the company responsible for

construction and maintenance of Italian motorways and state

highways.

We chose this Web site for the user test because our goal was

to focus on a real Web site supporting many users with some

services of public utility and with various usability problems,

as often happens. These are the cases in which our tool

provides most useful support. Another requirement was that

it provide not only static information but also some support

for interactive tasks.

Fig. 4. Bad Usability Smells in MUSE‘s backend

Fig. 5. Interaction that led to a Bad Usability Smell shown on

the user interface

We asked users to accomplish four tasks:

1) Plan a journey from a particular city to another retrieving

the best route,

2) Locate service areas along a specific route,

3) Retrieve today’s weather information for another route,

4) Retrieve a gas station location along another route and

check fuel prices.

Forty users performed the tasks by using their personal

smartphones, thus generating a significant database of more

than 14000 events. Each test was run remotely and each user

was free to choose where, how and when to carry out the test.

In addition, to ensure the privacy of each user, we

deliberately did not record any personal information: the

only information recorded were: Test Date; Test completion

time; The type and model of the device used; The type and

version of browser used. Since the test participation was

promoted among some Bachelor students and their friends,

we can estimate that the bulk of participants were aged

between 25 and 35 years old. The devices used in the test

were: 1 Windows Phone 8.1 device (Nokia Lumia 625), 1

BlackBerry Os device (Z10), 9 iOS devices (2 iPad and 7

iPhone), 29 Android devices (4 LG Optimus L5, 4 Samsung

S4, 4 Samsung S3, 3 Samsung S3 neo, 2 Samsung S5, 2

Samsung S4 Mini, 2 Galaxy Note, 1 LG Optimus L70, 1

Galaxy Ace 2, 1 Galaxy Tab 3 8.0, 1 LG G3, 1 Sony Xperia

Z3, 1 Motorola Fire XT, 1 Galaxy S Advance, 1 Google

Nexus 6).

User Test Results

The tool was able to detect 51 instances of bad usability

smells, distributed across the four proposed tasks, precisely

9 for task 1, 13 for task 3, 14 for task 3, and 15 for task 4.

In the first task, concerning the planning of an itinerary, the

interaction was mainly focused on a search form in the home

page. Seven users’ logs contained usability issues, mainly

related to the bad usability smell "Distant content", due to the

difficulty users encountered in finding the exact location of

items needed for the search. Moreover, one occurrence of

“Too Close Links” and “Bad Readability” were also

detected. The second task required users to search for

specific service areas on the route: to complete the activity,

users had first to access the specific section and then use a

variety of search tools placed on the left side of the user

interface. Due to the excessively small size of the search

panel, a number of zoom actions in the left area were

detected. The analysis detected seven occurrences of the

“Too Small or Close Elements” bad usability smell.

Moreover, there were two occurrences of “Too Small

Section”. Four instances of the bad Smell "Too Close Links"

were detected as well, due to the extreme proximity of a set

of icons on the home page, which are associated with various

links to internal pages of the site, including the one for the

search for service areas.

Figures 4 and 5 respectively show the “Too Small or Close

Elements” bad usability smell for Task 2 on the timeline and

highlight where the actions occurred in the user interface.

The third task required a search for information related to the

weather in a specific motorway section: the structure of the

search page was quite similar to that for the second task, and

the results were quite similar, with a higher incidence of bad

smells because of the presence of a drop-down list. In fact,

for this task ten occurrences of “Too Small or Close

Elements”, three occurrences of “Too Small Section” and

one of the “Too close links” were detected.

Finally, the last task proposed required a search for

information related to a specific type of fuel: this was the

most complex task and required the user to perform different

actions (e.g., select the areas section service, enter data, tick

the GPL checkbox). The results of the bad smell analysis

pointed out 11 occurrences of "Distant Content". This issue

stems from the presence of too many search results, which

forced users to move around in the interface in order to

visualize all the desired information, thus causing excessive

scrolling activity. In addition, two occurrences were detected

for both the “Too Small Section” and “Too Small or Close

Elements” bad usability smells.

The results of our tests showed that the most common bad

usability smells in the considered application were “Too

Small or Close Elements” and "Distant Content", identified

with about the same frequency, and which together make up

about 72% of the identified bad usability smells. In addition,

the results showed a low presence or absence of "Bad

Readability" and "Long Form" bad usability smells: this can

be explained considering the Web application type and the

tasks performed, which mostly focused on searching for

short textual information obtained through the interaction

with the forms.

Finally, as reasonable to expect, we found an increase in the

number of the identified bad usability smells with increasing

complexity of the tasks, from the nine identified issues for

the first and simplest task, to the fifteen for the last and most

complex task.

Usability Evaluators’ Feedback

Subsequently, eight usability experts were invited to use our

usability evaluation tool in order to provide feedback on its

functionalities and how it reports usability data. This expert

group consisted of six males and two females, aged between

27 and 47 years (avg. 36.5 years, SD = 7.43). Furthermore,

six of them had already had experience in the use of

automated tools for usability evaluation. Each of them

received a brief document describing the features offered by

the tool and the credentials to access it.

The usability experts did not receive any particular task, but

had the opportunity to freely use the tool, in complete

autonomy and without any time limit, and to explore the logs

database using the provided functionalities. They had the

possibility to access all the data and analyses related to the

user test reported in the previous sections.

From the tool-supported analysis it was possible to detect a

number of usability issues in the various tasks. In particular,

they referred to the presence of too close interaction

elements, which forced users to zoom in and out, and the

imperfect arrangement of content along the page, which

forced users to repeatedly scroll upwards and downwards.

For example, Figure 6 shows the homepage of the Web site

used for our test: the bottom of the central orange box

contains a form with which users had to interact to complete

the first proposed task. Due to the limited screen size, the two

form fields turn out to be too close to each other, to the

submit button and to the overlying link images (i.e. the credit

card, gas station and speedometer icons). This poor design of

the Web site generated a usability issue: this problem was

revealed in the timelines by frequent sequences of pinch and

pan events (to zoom in the page), or mistaken taps on one of

the overlying link images and consequent loading of another

Web page and quick return to the form page.

In the end, each participant was asked to complete a survey

composed of 25 questions, relating both to a general

assessment of the tool and to the provided functionalities: in

15 questions the experts could answer with a 7-point Likert

scale rating (i.e. the higher score, the better the evaluation, as

shown in Figure 7) and optionally provide suggestions, while

for the remaining questions they simply agreed or disagreed

with some statements regarding the tool.

The usability experts expressed an overall positive judgment

about the tool’s graphical appearance and its clarity.

Regarding the Overview view, the participants considered it

extremely useful to have a general overview of user

behaviour while performing a task and judged positively the

choice of the data displayed in this view. Moreover, almost

Fig. 6. Web site of “Autostrade per l’Italia”

Figure 7 Usability evaluators feedback

all of them considered the data presentation to be sufficiently

clear (87% of the group). Nevertheless, more than half of the

participants (62.5% of the group) provided us with

suggestions to improve the overview. They asked for more

information in the task summary (the starting Web page’s

title, information about the total number of users who

performed that task, the instructions provided to the user for

the task execution) and several other ways to aggregate

information about the sessions’ duration.

The timeline view required a longer and more detailed

investigation: experts considered clear and useful the events’

visualization through timelines, found inclusion of the Web

page’s screenshot extremely useful, and perceived as usable

both the navigation functionality and the zoom of the

timelines. The majority of participants (87%) deemed the

level of interactivity provided by timelines as sufficient, and

suggestions were mostly limited to proposals to change the

zoom icons (from +/- signs to magnifying glass-based icons).

The topic that received the most discordant opinions was the

timeline overlapping feature. In fact, all the experts

considered visual comparison of timelines more effective

than comparison based on quantitative data, and they also

liked the opportunity to first overlap two timelines and then

lock them so that they can move through them together along

the time axis to inspect different periods of time. At the same

time a minority of them criticized the usability of the timeline

comparison method. These criticisms mainly regarded the

possibility to place two timelines side by side instead of

overlapping them: this functionality was considered more

usable for comparing overly crowded timelines.

The experts also found the functionality of data filtering

useful, although many requested the ability to choose the

filtering logic, i.e. whether to remove the selected type of

events or to leave them and remove the other types (87%).

Moreover, regarding the bad smell detection functionality,

the usability experts considered it both usable and useful.

All the experts also agreed that the representation of bad

smells is clearly distinct from the events, and found the

representation of the bad smells in the page screenshots

useful. Thus, the feedback was positive regarding bad smell

identification. We also collected some comments and

suggestions, of which the most interesting were: the

possibility of using different sizes and colours for

representing different bad smells in the user interface

screenshots; making the representation of the bad smells on

the screen shot more interactive, in order to limit overlapping

of numbers and arrows; introducing some documentation to

interactively explain the bad smells, possible causes and

remedies. We plan to address these suggestions in future

versions of the tool.

CONCLUSIONS AND FUTURE WORK

We have presented a proposal for automatic detection of bad

usability smells based on the analysis of data collected

through a remote usability evaluation tool for mobile Web

interaction. For this purpose, we have identified a first set of

six common interaction patterns in mobile Web interaction

that often correspond to usability issues of the considered

application.

We have also designed and implemented an algorithm able

to detect their presence in client interaction logs. Since the

event patterns characterising the bad smells have been

formalized through an XML-based language, our solution

can be easily extended to consider further potential

interesting bad smells. For this purpose it is sufficient to add

in the dedicated XML file the definition of additional

patterns through the language we have developed for this

purpose and the tool will be able to detect them without the

need of changing its implementation. We have also reported

on a test of a real application by collecting and analysing data

from logs obtained from the task performance of forty

mobile users who accessed the application, not in a

laboratory, but freely in the wild, wherever they pleased. The

results have been useful to detect various usability problems

in the considered application, which experts also found

useful to support their analysis.

In order to optimize the performance, the underlying

algorithm has been designed with the idea to progressively

reduce the set of elements to process. Currently, the bad

smell analysis is carried out server side as is the log data

collection and processing as well. The entire process applied

to the data set and bad smells reported in the paper takes

about 40 seconds on a standard PC (Intel i3, 4gb ram). In

such period of time about 25% is dedicated to the bad smell

analysis. We are investigating further optimizations and

performance improvements. In future work, we will also

continue to improve the automatic bad usability smell

detection by investigating whether there are other

behavioural patterns to consider and further applying the

proposed method.

REFERENCES

1. A. Apaolaza, S. Harper and C. Jay, “Longitudinal

analysis of low-level Web interaction through micro

behaviours” in Proc. the 26th ACM Conference on

Hypertext & Social Media (Hypertext2015), 2015, pp.

337-340.

2. R.Atterer, M. Wnuk and A. Schmidt, “Knowing the

user's every move: user activity tracking for website

usability evaluation and implicit interaction” in Proc.

of the 15th international conference on World Wide

Web, 2006, pp. 203-212

3. “Autostrade per l’Italia” Web site. Retrieved February

6, 2017 from https://www.autostrade.it/en/home

4. Bing’s Mobile Friendliness Test Tool. Retrieved

February 6, 2017 from

https://www.bing.com/webmaster/tools/mobile-

friendliness

5. S. Boring, D. Ledo, X. Chen, N. Marquardt, A. Tang

and S. Greenberg, “The fat thumb: using the thumb's

contact size for single-handed mobile interaction” in

Proc. 14th international conference on Human-

computer interaction with mobile devices and services

(MobileHCI’12), 2012, pp. 39-48.

6. P. Burzacca and F. Paternò, “Remote usability

evaluation of mobile web applications” in Human-

Computer Interaction. Human-Centred Design

Approaches, Methods, Tools, and Environments, 2013.

pp. 241-248.

7. S. K. Card, T. P. Moran, and A. Newell. "The

keystroke-level model for user performance time with

interactive systems." Communications of the ACM,

vol. 23, no. 7, pp. 396-410, 1980.

8. ComScore’s Global Mobile Report (July 14, 2015).

Retrieved February 6, 2017 from

http://www.comscore.com/Insights/Presentations-and-

Whitepapers/2015/The-Global-Mobile-Report

9. M. Fowler, K. Beck, J. Brant, W. Opdyke and D.

Roberts, “Refactoring: Improving the Design of

Existing Code”, 1999, Addison Wesley

10. A. Garrido, G. Rossi and D. Distante, “Refactoring for

usability in web applications” in IEEE Software, vol. 3,

no. 28, pp. 60–67, 2011.

11. R. Geng and J. Tian, “Improving Web navigation

usability by comparing actual and anticipated usage,”

IEEE Trans. Human-Mach. Syst., vol. 45, no. 1, pp.

84–94, Feb. 2015.

12. Google's AdWords official blog (May 2015). Retrieved

February 6, 2017 from

http://adwords.blogspot.com/2015/05/building-for-

next-moment.html.

13. Google Mobile Friendly Test Tool. Retrieved February

6, 2017 from

https://www.google.com/webmasters/tools/mobile-

friendly/

14. Google Search Console. Retrieved February 6, 2017

from https://www.google.com/webmasters/tools/

15. J. Grigera, A. Garrido, and J. M. Rivero “A tool for

detecting bad usability smells in an automatic way” in

Web Engineering, ser. Lecture Notes in Computer

Science. vol. 8541 pp. 490–493, 2014.

16. J Grigera, A Garrido, JM Rivero, G Rossi, Automatic

detection of usability smells in web applications,

International Journal of Human-Computer Studies 97,

129-148, 2017.

17. P. Harms, J. Grabowski. (2014). Usage-Based

Automatic Detection of Usability Smells. In Human-

Centered Software Engineering, ser. Lecture Notes in

Computer Science, 8742: 217-234.

18. B. Hay, G. Wets and K. Vanhoof “Mining navigation

patterns using a sequence alignment method” in

Knowledge and information systems vol. 6 no. 2, pp.

150-163, 2004.

19. S. Herbold and P. Harms, “AutoQUEST -Automated

Quality Engineering of Event-Driven Software” in

Proc. sixth IEEE International Conference on Software

Testing, Verification and Validation Workshops

(ICSTW 2013), 2013, pp. 134-139

20. C Holz, P Baudisch, Understanding touch, Proceedings

of ACM CHI 2011, 2501-2510, 2011.

21. M. Y. Ivory and M. A. Hearst “The state of the art in

automating usability evaluation of user interfaces” in

ACM Computing Surveys (CSUR) vol. 33 no. 4 pp.

470-516, 2001.

22. F. Lettner, C. Grossauer and C. Holzmann, “Mobile

Interaction Analysis: Towards a Novel Concept for

Interaction Sequence Mining”, in Proc. 16th

International Conference on Human-computer

Interaction with Mobile Devices & Services

(MobileHCI 2014), 2014, pp. 359-368.

23. M. James Munro, “Product Criteria for Automatic

Identification of "Bad Smell" Design Problems in Java

Source-Code”, in Proc. 11th IEEE International

Software Criteria Symposium (CRITERIA 2005).

24. M. Nebeling, M Speicher and M. Norrie, “W3touch:

metrics-based web page adaptation for touch” in Proc.

SIGCHI Conference on Human Factors in Computing

Systems (CHI 2013), 2013, pp. 2311-2320.

25. J. Nielsen and R. Budiu. Mobile Usability. New Riders

(2013)

26. L.Paganelli, F.Paternò, Tools for Remote Usability

Evaluation of Web Applications through Browser Logs

and Task Models, Behavior Research Methods,

Instruments, and Computers, The Psychonomic Society

Publications, 2003, 35 (3), pp.369-378, August 2003

27. F.Paternò, A. G. Schiavone, P.Pitardi. “Timelines for

Mobile Web Usability Evaluation”, in Proc. of the

International Working Conference on Advanced Visual

Interfaces (AVI 2016), 2016, pp. 88-91.

28. D. Raptis, N. Tselios, J. Kjeldskov and M. Skov “Does

size matter? investigating the impact of mobile phone

screen size on users' perceived usability, effectiveness

and efficiency” in Proc. 15th international conference

on Human-computer interaction with mobile devices

and services (MobileHCI 2013), 2013, pp. 127-136).

29. A. D. Rice and J. W. Lartigue, “Touch-level model

(TLM): evolving KLM-GOMS for touchscreen and

mobile devices” in Proc. of the 2014 ACM Southeast

Regional Conference, 2014.

30. V. F. de Santana and M. C. Calani Baranauskas

“WELFIT: A Remote Evaluation Tool for Identifying

Web Usage Patterns through Client-Side Logging” in

International Journal of Human-Computer Studies, vol.

76 no. C pp 40-49, 2015.

