Touch and Gesture-based Uls

EICS'14, June 17-20, 2014, Rome, Italy

A Gestural Concrete User Interface in MARIA

Lucio Davide Spano
Department of Mathematics
and Computer Science,
University of Cagliari
Via Ospedale 72, 09124,
Cagliari, Italy
davide.spano@unica.it

ABSTRACT

In this paper, we describe a solution for engineering and
modelling user interfaces for supporting input collected
through gesture recognition hardware. We describe how
we applied such approach by extending the MARIA UIDL,
and how the modelling solution can be applied to other Ul
toolkits. In addition, we detail the model-to-code trans-
formation for obtaining a running application through
an example case study.

Author Keywords

Gestural interaction, Input and Interaction Technologies,
Analysis Methods, Software architecture and
engineering, User Interface design.

ACM Classification Keywords
H.5.m. Information Interfaces and Presentation (e.g.
HCI): Miscellaneous

INTRODUCTION

Different gesture recognition devices are available on the
market nowadays. They are more and more becoming
popular not only in the entertaining field, but also for
desktop applications (e.g. the Leap Motion or Microsoft
Kinect). Most of the times, the interfaces exploiting such
devices are created starting from different widget toolkits
that do not support them natively. Developers are there-
fore required to create bridging code between Ul toolkits
and the libraries managing the input device. Such sepa-
ration, while useful for reusing graphic controls also in
gestural interfaces, forces developers to redefine function-
alities that are usually supported by the underling toolkit,
such as the pick correlation.

In this paper, we describe how we extended MARIA [9], a
model-based user interface description language, in order
to support gestural interaction, taking as starting point

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from Permissions@acm.org.

EICS’14, June 17 - 20 2014, Rome, Italy

Copyright 2014 ACM 978-1-4503-2725-1/14/06 $15.00.
http://dx.doi.org/10.1145/2607023.2610282

Fabio Paterno
ISTI-CNR
Via G. Moruzzi 1
fabio.paterno @isti.cnr.it

179

Gianni Fenu
Department of Mathematics
and Computer Science,
University of Cagliari
Via Ospedale 72, 09124,
Cagliari, Italy
fenu @unica.it

the graphical desktop interface meta-model. We iden-
tified two problems shared with other Ul toolkits: the
implicit relationship between the pointing device and the
pointer position and the lack of separation between the
definition of gestures and their effects on the UL. We pro-
pose solutions to these problems, which can also be reused
in other toolkits. In addition, we discuss a modelling tech-
nique for reusing the definition of platform-independent
behaviour, which is useful for other modelling languages
that exploit different abstraction levels in their definition.

RELATED WORK

The problem of a more effective integration of the ges-
tures in both the design process and the structure of
UT toolkits, has been addressed in [1]. They identified
the different stakeholders involved in the design process
and a set of extensions points for the currently available
UT toolkits (in particular for pen-based interaction) ap-
plying an abstraction-level approach for modelling user
interfaces, which is similar to the one we propose in this
paper. They considered classifier-based gesture recogni-
tion, which is affected by a granularity problem: raising
a single event when the gesture is completely recognized
impedes the definition of intermediate feedback during
the gesture performance.

In this paper, we consider a hierarchical modelling tech-
nique, which describes the gestures staring from a set of
basic building blocks and creates complex ones, allowing
intermediate feedback. Different work employ a similar
representation with different formalisms like regular ex-
pressions [7, 6], Json [4] or Petri-Nets [3]. We adopted the
approach described in [11, 12], which provides a descrip-
tion of gestures through the connection of ground terms
related to the low-level events raised by the recognition
devices, with a set of temporal operators defined through
Petri-Nets and providing a set of compositional operators
more expressive than regular expressions (see [12]). In
this paper, we go beyond the gesture description, provid-
ing a solution for integrating it with the other aspects of
existing UI toolkits.

Other approaches adopted in commercial Ul toolkits, like
e.g. the Kinect SDK, include a set of gestural widgets,
containing a hard-coded gesture description, without
any support for their composition (e.g. two gestures in

Permissions@acm.org
http://dx.doi.org/10.1145/2607023.2610282

Touch and Gesture-based Uls

sequence). In MARIA, the two aspects (graphic control
and gesture definition) are completely decoupled.

BACKGROUND

MARIA [9] (Model-based 1Anguage foR Interactive Ap-
plications) is a set of XML languages for defining Uls
at different levels of abstractions, according to the
CAMELEON |[2] reference framework structure. The
set includes an abstract language that has multiple refine-
ments for the different interaction platform supported.

The Abstract User Interface (AUT) level describes a Ul
through the interaction semantics, without referring to a
particular device capability, modality or implementation
technology. In addition, the interface definition contains
the behaviour and the description of the data types that
are manipulated by the user interface. The data model
is defined using the standard XML Schema Definition
constructs.

A Concrete User Interface (CUI) in MARIA provides
platform-dependent but implementation language inde-
pendent details of a UI. A platform is a set of software
and hardware interaction resources that characterize a
given set of devices, such as desktop, mobile, vocal, mul-
timodal etc. From the CUI different final user interfaces
(FUI) can be derived and implemented with different
technologies (e.g. web-based or standalone).

GESTURAL CONCRETE USER INTERFACE

In this section we describe the MARIA gestural CUI
meta-model, providing a refinement of the AUI language
and covering the modelling concepts needed by gestural
interfaces. Conceptually, the meta-model should describe
how the interface appears, how the user can provide input
through the gesture-tracking device and how the interface
reacts to such inputs. All these aspect are summarized
by the following aspects:

1. The description of the interface layout

2. The description of the data provided by the device

3. The description of the gestures and the temporal rela-
tionships between them.

The description of the effects that the gestures have
on the other parts of the interface.

4.

The first point is related to the visual part of the ges-
tural UL Since MARIA already contains a desktop CUI
definition (see [9] for additional details), we extended
the graphic controls for supporting the gestural modality.
This is a common starting point also for many UI toolkits:
the definition of different graphic controls already exists,
what is needed is the support for other input devices
different from mouse and keyboard.

The second point covers the data received by the recog-
nition device during the gesture performance. The data
description needs to be independent from the actual pro-
gramming language or development toolkit, a requirement
for the compliance with the reference framework in [2].

The third point is related to the gesture description. We
adopted the solution discussed in [11, 12], which allows

180

EICS'14, June 17-20, 2014, Rome, Italy

describing gestures starting from a set of ground terms
representing the device features (e.g. the joint position),
which can be connected by means of different composition
operators. This separates the gesture description from
the UI behaviour, providing the possibility to reuse the
gesture definition for different interfaces, and it can be
adopted as solution also in other toolkits.

The forth point deals with two different aspects of the ges-
tural Ul model. The first one is how to model the visual
feedback that the user has to receive during the gesture
performance. The second aspect is the need to relate
the definition of the UI behaviour at the abstract level
and the recognition of the gestures at the concrete one
in order to be compliant with the reification concept [2].

Interactors

The first problem for adapting the desktop interactors to
the gestural modality is related to their selection mech-
anism. In all desktop toolkits, the user activates the
interactors through a pointing device, whose movements
are shown by the screen pointer. The mapping between
the mouse position on the physical space and the pointer
position on the screen space is not controlled by the Ul
developer. Instead, in a gestural interface, designers need
to define such transformation. Indeed, it is possible to
choose different ways for starting the interaction with a
concrete Ul object. For instance, we can provide a se-
quential navigation of the different objects represented on
the screen through swipe gestures (a left-to-right swipe
for selecting the next object and a right-to-left one for
selecting the previous one) or the user may directly point
with her hand the object to select.

When considering a gestural interaction, the usual selec-

tion process can be summarised as follows:

1. When the selection gesture is recognized (e.g. the
swipe ends or the user points on object on the screen),
the event-handler associated to the gesture recognition
calculates which object has been selected through a
pick correlation function.

. After having identified the selected object, the applica-
tion should provide feedback to the user. This can be
done changing a visual property of the selected object
(e.g. the border colour).

. Finally, if the selected object has some behaviour asso-
ciated to its selection, it must be executed.

All these steps are usually defined in the code activated
by the gesture recognition, which is completely written
by the application developer, without reusing any toolkit
internal procedures such as the pick correlation, the event
tunnelling or bubbling.

In MARIA, we extended the definition of the Interactor
Composition elements (which represent groups of interac-
tors) for easing the definition of such selection pattern:
we exposed a property called focusPoint for specifying
the pointing position. When the coordinates of a focus
point are changed at runtime, the composition is respon-
sible for the pick-correlation, either selecting a contained

Touch and Gesture-based Uls

interactor or forwarding the notification to the nested
compositions. With this protocol, the designer is no
more in charge of defining the pick correlation between
the point and the interactors, but it is possible to model
different strategies for the interactor selection with the
gestural modality.

It is worth pointing out that the same solution can be
applied to UT toolkits and models different from MARIA,
extending container elements (e.g. panels, windows etc.)
with a focus point property, and to reuse their pick cor-
relation algorithm, which has been already defined for
reacting to mouse events.

Modelling device data

The device data modelling depends on the abstraction
provided by the specific gesture tracking hardware. For
instance, if we consider a multitouch screen, the device
data can be modelled with the array of the 2D position
of the on- screen touches (usually from 5 to 10).

If the device is able to track the entire skeleton (e.g. MS
Kinect), the device data can be modelled with a structure
containing the collection of the skeleton joint positions
(a 3D point) and the joint orientation (a 3D vector). One
instance of this data structure is available for each tracked
user. It is possible to model similarly other tracking
devices such as the Leap Motion, which provides the
position and the orientation of the fingers, together with
the orientation of the palm. The remote-based devices
can be modelled through their position and orientation in
the 3D space. Such data can be referenced in both event
handlers and the modelling of the recognition constraints
(detailed in the following section).

The changes on the device state are notified follow-
ing the observer pattern (e.g. multitouch screens) or
through streams returning frames at regular intervals
(e.g. Kinect). Usually it is not sufficient to consider
the current device state for modelling gestures, but we
need to calculate differences between the current values
and those received at previous notifications or frames.
Our data representation contains also a history of the
device state during the recognition. The runtime imple-
mentation of the model cannot obviously maintain the
whole history, but it should maintain only the part that
is necessary for the considered gesture model.

Gestures definition

In MARIA, at the AUI level the dialog model already
contains elements for expressing the dynamic behaviour
of a presentation. It defines the expected sequence (or
sequences) of actions that are supported by the interface.
We consider the temporal evolution of a gesture as a
concrete example of such dialog model. Figure 1 shows
the UML class diagram for the gesture model. At the
AUI level, the DialogModel is associated to a Presen-
tation and consists of different DialogEzpressions. The
GestureEzxpression refines such definition at the CUI level,
introducing the modelling elements for the gestural in-
teraction. In order to describe the temporal evolution

181

EICS'14, June 17-20, 2014, Rome, Italy

AUl
0.1 DialogModel -
i !
Seript - +name : String
. 1
¢4

1

Dialo%Ex%ression

PropertyConditionGroup
+operator : BooleanOperator | 0.1

1

<<enumeration>>
BodyFeature

<<Constant>> +head
<<Constant>> +shoulderCenter
<<Constant>> +shoulderRight
<<Constant>> +shoulderleft
<<Constant>> +elbowLeft
<<Constant>> +elbowRight
<<Constant>> +wristLeft
<<Constant>> +wristRight
<<Constant>> +handLeft
<<Constant>> +handRight
<<Constant>> +openHandLeft
<<Constant>> +openHandRight
<<Constant>> +hipCenter
<<Constant>> +hiplLeft
<<Constant>> +hipRight
<<Constant>> +kneeleft

Gestural CUI

| GestureExpression |
+iterative : boolean L*
+minOccurs : int
+maxOccurs : int

error

0.1

complete

0.1

accepts

0.1 1

SimpleGesture | [

ComplexGesture
‘ ‘H)peramr : Operator

<<enumeration>>
Operator
<<Constant>> +enabling
<<Constant>> +parallel
<<Constant>> +choice
<<Constant>> +disabling

<<Constant>> +kneeRight
<<Constant>> +ankleleft
<<Constant>> +ankleRight
<<Constant>> +footLeft
<<Constant>> +footRight

SimpleBodyGesture

+feature : BodyFeature

Figure 1. Full-body gesture model

of a gesture, we applied the composite pattern [5]: the
gesture description starts from a set of SimpleGestures
that can be composed in ComplezGestures.

A simple gesture recognises a change on a value that is
tracked by the recognition device. Figure 1 shows its
refinement for the values tracked by a full-body tracking
device (e.g. MS Kinect), represented by the BodyFeature
enumeration. Other devices can be added providing fur-
ther refinements of the SimpleGesture class. In addition,
the SimpleGesture instances may specify some constraints
on such data change for e.g. calculating trajectories. In
MARIA this is possible through the instances of the
PropertyConditionGroup class, which represent Boolean
predicates on i) the value of an interactor attribute, ii)
the value of a data model element or iii) the result of the
execution of an FxternalFunction, a functionality that is
external to the definition of the UI model, such as a data
source or a web service. The latter modelling element
allows the reuse of the same predicate across different
definitions. ComplexGestures are obtained connecting
recursively other sub-gestures (either simple or complex)
through a set of composition operators, the same used
for modelling tasks in CTT [8].

In other UI toolkits it is possible to apply the same
modelling solution by organizing the interface definition
structure. The code that is responsible for recognizing
the gesture must be separated from the code defining
the UI behaviour. The simplest way is to use two dif-
ferent classes and to connect them using the observer
pattern [5], notifying both the recognition success and
error. In addition, there must be a composition mecha-
nism for combining different gesture descriptions (e.g. a
composite pattern [5]), specifying different relationships
among the composed elements. The description model

Touch and Gesture-based Uls

may be different from the one we propose in this paper
and it may be more or less expressive, but the proposed
approach allows isolating this aspect, with the advantage
that possible changes in the description model (or even
meta-model) would not affect the other UI parts (e.g. the
behaviour).

Gesture effects

The hierarchical definition of the gesture model can be
exploited in order to attach the UI behaviour to the entire
gesture model and/or each one of its subparts, providing
feedback not only at the end but also during the gesture
performance. The Ul can react to both the successful and
the unsuccessful recognition. In this way, it is possible
to define a “rollback” procedure for partially recognized
gestures, which restores the UI state. This approach can
lead to conflicts between different UI reactions when two
different gestures in choice start with the same prefix.
This is known as the selection ambiguity problem, and it
has been discussed in [12].

In MARIA, the dynamic changes to the Ul and to the
data model state are defined through the Script class.
It contains elements representing expressions and state-
ments, which are able to define completely the Ul be-
haviour at the abstract and/or the concrete level (see [9]
for more information). In order to distinguish the be-
haviour associated to the successful recognition from the
error management, we connected the generic Gesture Ez-
pression class with two instances of the Script class in
Figure 1: the complete association defines the reaction
to a successful recognition and error association defines
how to recover a recognition failure.

In MARIA, the interface behaviour defined at the AUI
level is inherited by concrete refinements. As we already
discussed for the pick correlation problem, the designer
may use different paradigms for both the interactor se-
lection and activation. Therefore, the completion of a
given gesture should be able not only to trigger the exe-
cution of some concrete-platform dependent behaviour,
but also to activate the behaviour defined at the abstract
level. The binding between the gestures and the abstract
events cannot be derived implicitly as in the classical
desktop interfaces, but the developer needs to define it
explicitly. We rely on raising the abstract events inside
the definition of the behaviour associated to a gesture ex-
pression in order to solve this problem. The meta-model
contains the Raise element at the AUI level, which al-
lows raising a specific event (either abstract or concrete)
specifying the event name, the interactor identifier and
the event arguments (if needed). Therefore, the schema
for binding gestures to the abstract behaviour consists
of the following steps: i) managing the changes that
involve the concrete level (most of the times providing
the intermediate feedback) and ii) raising the abstract
event that the designer wants to trigger. We provide a
modelling example for such binding with a sample appli-
cation. This solution (including an explicit construct for
redefining how the platform-independent behaviour can

182

EICS'14, June 17-20, 2014, Rome, Italy

be activated) can be employed also in other UT toolkits
including an AUI level, in order to reuse the behaviour
definition for different refinements.

Model to code transformation

A model to code transformation creates the FUI from a
CUI definition, exploiting the following technologies:

e WPF as presentation layer

o C# for defining the application behaviour

e The GestIT library for gesture recognition [10, 12]

e The Kinect SDK for managing the sensing device.

The transformation process consists of two steps. The
first one transforms the MARIA CUI mode into a XAML
file, defining both the UI layout and the gesture descrip-
tion (GestIT provides the XAML tags for the gesture
expression). The second step takes as input the same
CUI and creates a C# file containing the definition of
the application behaviour. Their combination defines the
application completely, exploiting the C# partial class
definition mechanism. Both transformations are defined
using an XSLT, using plain text as output.

It is worth pointing out that the information regarding all
the interface aspects (UI appearance and images, gestures
and behaviour description) is contained in the CUI model.
No other source is exploited for the generation.

SAMPLE APPLICATION

In this section we describe a sample gestural interface
modelled in MARIA, a remote controller for a digital
TV. The MARIAE tool supports the entire modelling
process' . The application allows the user to watch a TV
show, to change the current TV channel and to retrieve
information on the program scheduling. It is organized
as follows:

P1 The first presentation contains a video element for
watching the TV show. It is connected with P2
through a hidden navigator, which can be activated
through a wave gesture (using the greet the screen
metaphor typical for Kinect applications).

The second presentation contains two navigators: one
pointing to the channel list and the other to the pro-
gram schedule. The user points one of them with the
open hand, and closes it for confirming the selection.
The third presentation shows the channel list in a 3x3
grid. The user can select one element pointing at it
and closing the hand or she can change the subset of
visualized elements with a hand swipe from left to
right (next 9 items) or from right to left (previous 9
items).

The program schedule is shown using a tab container,
including an element for each day of the week. The
user can go back and forward among the tabs with a
swipe gesture.

P2

P3

P4

We start our discussion from the gesture description. In
this interface we have three different gestures: wave (P1),

'The tool is available at http://giove.isti.cnr.it/tools/
MARIAE/home

http://giove.isti.cnr.it/tools/MARIAE/home
http://giove.isti.cnr.it/tools/MARIAE/home

Touch and Gesture-based Uls

A~ A~
1 2 3
Y Y Y
Figure 2. The wave gesture
pointing (P2 and P3) and swipe (P3 and P4). Already
in this simple example, the description of two gestures is
referenced in more than one presentation. All gestures
can be recognized tracking the position of the dominant

hand. We assume here to be the right one (the definition
for the left is symmetric).

The wave gesture can be defined considering three steps,
visually represented in Figure 2. We set the origin of the
coordinate system in the users elbow for simplicity in
the description: the user starts her hand movement from
the second quarter (positive Y and negative X values),
then the hand goes in the first quarter (positive X and
Y). This sequence must be performed at least once, but
it can be repeated more than once. Eventually, the user
lowers the hand (third quarter, negative X and Y).

In MARIA, we can model the wave gesture tracking
the hand position, as defined in Figure 3. The three
steps correspond to the Simple BodyGestures, which differ
for the hand positions they accept as valid (contained
respectively in the second, first and third quarter of
the coordinate system). Such conditions are defined by
the accept property of each simple gesture, testing the
positive sign of the x and y coordinates of the hand
point (posX and posY instances). The conditions for
the three steps are respectively posX A posY, posX A
posY and posX A posY. They are modelled by the
PropertyConditionGroup instances in Figure 3.

The three simple gestures define each step in isolation.
In order to define the entire gesture, we need to connect
them through the composition operators, defining the
ComplexGesture instance representing the wave gesture.
During each step the hand moves iteratively (the iterative
attribute in the SimpleBodyGesture instances) until it
reaches a position valid for the next step, thus disabling
the iteration. The first two steps must be recognized at
least once, but they can be repeated an indefinite number
of times (respectively the minOccurs and iterative at-
tributes of the cpz! instance). The gesture is represented
by the wave instance in Figure 3.

The other two gestures can be defined in a similar way.
The pointing gesture consists of an iterative movement
of the dominant hand, disabled by the hand closure. The
swipe gesture simply consists in a rapid hand movement
from left to right or from right to left. This can be mod-
elled through an iterative movement of the dominant hand
that maintaining a speed higher than a given threshold
(defined in the accept property), which is disabled by a

183

EICS'14, June 17-20, 2014, Rome, Italy

posY ; Pr

wave ; ComplexGesture

operator = disabling

a—

c11: stepl- cpxl:
PropertyConditionGroup SimpleBodyGesture ComplexGesture
operator = not Lo | feature = handRight operator = disabling
minOccurs = 1 minOccurs = 1
iterative = true iterative = true
€12:
-
step2 :

operator = and accept simpl d

ture

feature = handRight

minOccurs = 1
PropertyConditi oup iterative = true
operator = and accept
step3;
SimpleBodyGesture
B :_4_]“:._ G feature = handRight
* minOccurs = 1
operator = not iterative = true
jj accept
42: ca3.
o> ¢ ConditionG

e
operator = not 9 operator = and

Figure 3. Wave gesture in MARIA

hand movement below that speed. The UI behaviour can
be attached to the complete and error properties of both
simple and complex gestures, defining different instances
of the Script class. In this way, it is possible to reuse
the gesture definition in more than one presentation. For
instance, the hand closure sub-component of the pointing
gesture is associated with the function selection in P2
and with the channel selection in P3, while maintaining
the same gesture definition. Since the same gesture can
be used in different contexts, designers should include
hints on the UI for helping the user in understanding
which gestures are available and their effects. We analyse
more in detail the definition of P3, in order to show a
typical case where redefining the association between the
screen pointer position and the physical device is needed.
The interface for P3 is shown in Figure 4 (actually it
is the result of the model-to-code transformation). The
intermediate feedback (a blue border around the channel
icon) is associated to the hand movement sub-component
of the pointing gesture. The associated Script instance
is responsible only to project the hand position in the
device space on the screen plane (e.g. tracing a line),
and to change the focus point property of the channel
list grouping. The other operations (the pick correlation
and the application of the focus styles to the selected
element) are delegated to the grouping implementation,
as usually happens for e.g. mouse hovering.

The last point we want to detail in this example is the
mechanism for connecting the gesture effects and the
behaviour inherited from the AUI level. The following
actions can be defined at the abstract level in our ap-
plication, since they are independent from the modality
for triggering the interactor (e.g. mouse click, vocal com-
mand, gesture etc.) and their definition can be shared
on different platforms:

P1 Navigation to P2
P2 Navigation to P3 or P4

Touch and Gesture-based Uls

Grab

T

2

Rai 2

Pointing

<a

=1

Rai 1

Rete 4

v

La7

Swipe

=

g

=l

ey

Canale 5
MTV

Figure 4. Channel selection interaction and presentation

Italia 1

VIDEOLINA

Videolina

P3 Changing the video stream (according to the selected
channel) and going back to P1
P4 Navigation to P1

Considering the gestural modality, the user does not
necessarily point an interactor before activating it: the
activation may occur without a spatial correspondence
between the gesture and the on screen representation of
the interface. For instance, the wave gesture activates the
navigation to P2, but the user does not select any link
first. Therefore, in order to maintain the conformance to
the different abstraction levels [2], we need to connect the
completion of the wave gesture with the activation of the
navigator between P1 and P2, inherited from the abstract
level. In MARIA, this is possible through the Raise
modelling element, which allows developers to explicitly
request the UI runtime support to raise a specific event.
In our case, the Script handling the completion of the
wave gesture (specified in the complete property) contains
a Raise element triggering the activation of the navigator
between P1 and P2. After that, the UI support executes
the event handler associated to the navigator, which has
been defined at the abstract level.

CONCLUSION AND FUTURE WORK

n this paper we discussed a new Gestural Concrete User
Interface we introduced in MARIA. Through the descrip-
tion of its meta-model, we identified a set of limitations
that are common to different Ul toolkits and we discussed
the solutions we adopted in our modelling language, al-
lowing the separation of four different aspects for defining
a gestural Ul (interface layout, device data, gesture de-
scription, gesture effects). Other modelling languages
and toolkits, even with different formalisations of the
different aspects, can adopt such organization. In addi-
tion, we reported on the model-to-code transformation
and detailed the modelling approach through a concrete
example.

In future work, we aim to extend the gestural CUI in order
to support more interaction devices and to evaluate more
in detail the expressiveness of the gesture description

184

EICS'14, June 17-20, 2014, Rome, Italy

model. In addition, we will enhance the tool support
with a graphical notation for the gesture description, in
order to study the impact of the proposed UI structuring
on the design of real-world applications, providing a
designer-centred evaluation of our modelling approach.

ACKNOWLEDGEMENTS

We gratefully acknowledge Sardinia Regional Government
for the financial support (P.O.R. Sardegna F.S.E. Opera-
tional Programme of the Autonomous Region of Sardinia,
European Social Fund 2007-2013 - Axis IV Human Re-
sources, Objective 1.3, Line of Activity 1.3.1 “Avviso di
chiamata per il finanziamento di Assegni di Ricerca”.

REFERENCES
1. Beuvens, F., and Vanderdonckt, J. Designing Graphical User
Interfaces Integrating Gestures. In Proceedings of the 30th
ACM International Conference on Design of Communication,
SIGDOC ’12, ACM (New York, NY, USA, 2012), 313-322.

. Calvary, G., Coutaz, J., Thevenin, D., Bouillon, L., Florins,
M., Limbourg, Q., Souchon, N., Vanderdonckt, J., Marucci, L.,
Paterno, F., and Others. The CAMELEON reference
framework. Deliverable D 1 (2002).

. Deshayes, R., Mens, T., and Palanque, P. A generic
framework for executable gestural interaction models. In
Visual Languages and Human-Centric Computing (VL/HCC),
2013 IEEE Symposium on (2013), 35-38.

. Echtler, F., and Butz, A. GISpL: gestures made easy. In
Proceedings of the Sixzth International Conference on Tangible,
Embedded and Embodied Interaction, TEI 12, ACM (New
York, NY, USA, 2012), 233-240.

. Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley Professional Computing Series. Pearson
Education, 1994.

. Kin, K., Hartmann, B., DeRose, T., and Agrawala, M.
Proton++ : A Customizable Declarative Multitouch
Framework. In Proceedings of the 25th annual ACM
symposium on User interface software and technology (UIST
2012), ACM Press (Berkeley, California, USA, 2012), 477-486.

. Kin, K., Hartmann, B., DeRose, T., and Agrawala, M. Proton:
multitouch gestures as regular expressions. In Proceedings of
the 2012 ACM annual conference on Human Factors in
Computing Systems (CHI 2012), ACM Press (Austin, Texas,
USA, 2012), 2885-2894.

. Paterno, F. Model-based design and evaluation of interactive
applications. Springer Verlag, 2000.

. Paterno, F., Santoro, C., and Spano, L. D. MARIA: A
universal, declarative, multiple abstraction-level language for
service-oriented applications in ubiquitous environments.
ACM Transaction on Computer Human Interaction 16, 4
(2009), 19:1-19:30.

Spano, L. D. Developing Touchless Interfaces with GestIT. In
Ambient Intelligence, F. Paterno, B. de Ruyter,

P. Markopoulos, C. Santoro, E. van Loenen, and K. Luyten,
Eds., vol. 7683 of Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, 2012, 433-438.

Spano, L. D., Cisternino, A., and Paterno, F. A
Compositional Model for Gesture Definition. In Proceedings of
the 4th International Conference in Human-Centered Software
Engineering (HCSE 2012), vol. 7623, LNCS, Springer
(Tolouse, France, 2012), 34-52.

Spano, L. D., Cisternino, A., Paterno, F., and Fenu, G. Gestit:
A declarative and compositional framework for multiplatform
gesture definition. In Proceedings of the 5th ACM SIGCHI

Symposium on Engineering Interactive Computing Systems,
EICS ’13, ACM (New York, NY, USA, 2013), 187-196.

10.

11.

12.

	Introduction
	Related work
	Background
	Gestural concrete user interface
	Interactors
	Modelling device data
	Gestures definition
	Gesture effects
	Model to code transformation

	Sample application
	Conclusion and future work
	Acknowledgements
	REFERENCES

