
A Model-Based Approach for Gesture Interfaces

Lucio Davide Spano
ISTI-CNR

Via G. Moruzzi 1, 56124, Pisa, Italy
lucio.davide.spano@isti.cnr.it

ABSTRACT
The interaction technologies had substantial enhancements
in later years, with the introduction of devices whose ca-
pabilities changed the way people interact with games and
mobile devices. However, this change did not really affected
desktop systems. Indeed, few applications are able to exploit
such new interaction modalities in an effective manner.

This work envisions the application of model-based
approaches for the engineering of gesture user interfaces, in
order to provide the designer with a comprehensive theoret-
ical framework for usage-centred application design. The
differences between existing gesture-enabling devices will
be tackled applying more general solutions for multi-device
user interfaces.

Author Keywords
HCI Models, Gestures, multi-touch, natural interaction

ACM Classification Keywords
H.5.2 Information interfaces and presentation (e.g., HCI):
User Interfaces.

General Terms
Design, Human Factors, Languages.

INTRODUCTION
Gesture-based videogames opened the electronic entertain-
ment market to a wider set of users and they are currently
available on all major game consoles. However, the employ-
ment of this modality on different kinds of applications is
still at a research stage, even in those areas where they have
already demonstrated to be useful (e.g. collaborative en-
vironments, educational and museum scenarios, etc.). The
main problem is the difficulty in creating such interactive
applications. In order to build a gesture system, the engi-
neers should create their hardware and software configura-
tion for both recognizing and managing movements. The
recognition system choice is usually made before the inter-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EICS’11, June 13–16, 2011, Pisa, Italy.
Copyright 2011 ACM 978-1-4503-0670-6/11/06...$10.00.

action design, with a really high probability of an overall
poor usability of the final application.

The objective of this work will be the application of model-
based approaches for user interfaces (UIs) to the gesture
modality. This will provide a theoretical background to de-
signers that want to create effective and usable gesture in-
terfaces, first defining the interaction that should be sup-
ported and then choosing the right recognition technology.
The exploitation problem of really different recognition de-
vices can be addressed with the more general solutions for
multi-device user interfaces. In particular, in this paper will
be described some preliminary results for the definition of a
gesture description model, which tries to provide a new ab-
straction for designers that overcomes the traditional event
model limitations in gesture modelling.

BACKGROUND
Gestures in natural interaction consist of movements of
hands, face or other body parts that are used for communi-
cation between people, replacing or enhancing speech. Ges-
ture interfaces emulate such kind of communication, recog-
nizing a set of gestures an exploiting them as input for com-
puters. Many tracking and sensing technologies have been
employed in order to recognize gestures. In [4] it is possible
to find a survey of the different approaches.

The release of the Nintendo Wii1 in 2006 marked the lever-
age of gesture based interaction from research studies to the
market. This game console introduced an innovative con-
troller called Wii Remote. Its hardware configuration al-
lowed the development of games that break the standard and
static game pad interaction, in which the player has to stay
motionless and control actions pressing buttons. The user
can indeed control avatars through the remote, performing
the movements that should be done by their virtual coun-
terparts. Sony PlayStation 3 adopted a similar controller in
2010 with the PlayStation Move2.

Another option for gesture recognition is the usage of mo-
tion tracking techniques in order to recognize human move-
ments. An example of this approach is CamSpace3, a soft-
ware tool that exploits webcams for turning any object into
a controller. This generic approach comes at the price of
loosing possible haptic feedback coming from a dedicated
1http://www.nintendo.com/wii
2http://us.playstation.com/ps3/playstation-move/
3http://www.camspace.com

327

http://www.nintendo.com/wii
http://us.playstation.com/ps3/playstation-move/
http://www.camspace.com

device: the object is only tracked and cannot be used to
send interaction outputs to the user. Another great change
in the way people interact with games has been produced
with the launch of Microsoft Kinect4, designed for the XBox
360 game console, which was released in November 2010.

Still in game environments, it is possible to find another de-
vice type enabling for full body movement interaction, the
so-called Dance pads. Introduced by Konami with Dance
Dance Revolution5, they are essentially huge directional pads
with big arrow-shaped buttons that can be pressed with feet.
This configuration allows the player to move following the
music and the button sequence displayed on screen. Another
kind of floor device is the Wii balance board, that is a rectan-
gular feet panel that is equipped with two pressure sensors.
It is mainly used in snowboard emulation games and also in
aerobic and yoga activities.

GESTURE CONCRETE USER INTERFACE
In order to tackle with the existence of all these different de-
vices and recognition capabilities, we propose to place the
gesture UI modelling in the broader scope of model-based
approaches for user interfaces. The gesture modality will
be integrated as a platform into the MARIA XML [6] mod-
elling language. A platform is a hardware and software con-
figuration that allows the interaction with a system. The
approach followed in MARIA XML is the definition of a
multi-device user interface through the following levels of
abstraction: the Concepts and Tasks level, the Abstract User
Interface (AUI), the Concrete User Interface (CUI), and the
Final User Interface (FUI). The Concepts and Tasks level
contains the description of the concepts managed by the ap-
plication together with the tasks that should be supported.
The AUI contains a user interface description independent
with respect to the device and the interaction modality. The
CUI contains a user interface description abstract with re-
spect to the technology used for the implementation. The
FUI contains the final implementation of the user interface,
expressed in source code.

Considering these abstraction levels, it will be defined a CUI
meta-model, exploiting the concepts provided by CTT [5]
for tasks and the current MARIA XML Abstract User Inter-
face meta-models. More precisely, the gestures will be cat-
egorized under the Selection, Control and Edit interaction
semantics categories. The Only Output interactor descrip-
tion will be described reusing the graphical desktop model
already contained in MARIA XML. It is assumed that the
screen is the main output device, together with the audio
modality. Differently from the existing MARIA XML CUIs,
the gesture CUI will also take into account the haptic feed-
back, which is a peculiar characteristic of some gesture en-
abling devices. The gesture CUI meta-model will be con-
structed using the following building blocks:

• Gesture description model.

• Gesture effect model.

4http://www.xbox.com/en-US/kinect
5http://www.konami.com/ddr/

• Presentation model.

• Dialog model.

The Gesture description model will contain the description
of the gestures that can be performed for interacting with the
application. The description will define only how human be-
ings can execute a gesture, without associate any meaning to
it. It will be defined a taxonomy of basic body gestures. A
starting point can be the HamNoSys[7] notation, using the
SiGML [2] syntax. Furthermore we need also to define the
gesture composition operators, in order to allow the design
of complex gestures starting from basic ones. For instance
it is possible to describe the usual head movement for say-
ing “no” with a sequence of four basic movements, starting
from the head rest position: left rotation, return to the rest
position, right rotation, return to the rest position.

From the human communication theory, we know that the
gesture execution can be described using three categories [3,
p. 86]: static (gesture that does not take movements into
account), dynamic (hand trajectories or change of posture
over time) and spatio-temporal (a subset of the dynamic ges-
tures that move through the workspace over time). Thus the
gesture description taxonomy should not only consider a se-
quence of body positions, but also the timing and the space
used in order to perform the gesture, which can be exploited
by the designer as arguments. For instance, in a golf game,
the swing speed can be associated to the power of the simu-
lated strike. The classical event model that supports the point
and click interaction is not suitable for describing such ges-
tures. Events are usually atomic notification of changes in
some observed variables, which should be handled without
assuming any temporal relation between them. Currently,
gestures are modelled with single atomic events, which no-
tify their occurrence. The problem with this notification
mechanism is the lack of feedback during the performance,
which is really often needed (gestures have a higher time
duration compared with clicks). The solution is typically the
access to the low level signals coming from input devices,
with the consequent loss of an high-level event view for the
considered gesture.

With the envisioned gesture description model it will be pos-
sible to manage the gesture as a whole, but there will be also
the possibility to access to its components, in order to pro-
vide intermediate feedback once some basic gestures have
been recognized. Moreover, it should be also possible to
study the creation of an ergonomic measurement function.
Indeed, once identified the basic gestures, each one can be
assigned to a fatigue value. After that it can be investigated
how the composition operators have influence in the per-
ceived fatigue, with the possibility of estimating the phys-
ical cost of a complex gesture. This fatigue model should
also consider the impact of the spatio and temporal charac-
teristic of the described gesture. The gesture taxonomy and
the composition operators identified can drive the creation of
gesture recognizers: complex gesture recognizer can be built
using a composition of basic recognizer implemented with a
device-dependent library. Designers have not to reinvent the
wheel for each UI, so it should be available a set frequently-

328

http://www.xbox.com/en-US/kinect
http://www.konami.com/ddr/

used complex gestures. Their definition should be ready out
of the box, and they should be classified under the MARIA
XML AUI interactor categories (Select, Control, Edit).

The Gesture effect model will contain the definition of the
effects that the gesture interaction produces on the current
UI state, together with user feedback for the gesture recog-
nition (including also the haptic modality). This part will
reuse the existing constructs contained into MARIA XML,
introducing some refinements if needed.

The gesture modality usually cooperates with other ones, es-
pecially graphical and audio, because it is rarely able to pro-
vide complex feedback. For this reason, it has also to be
included a Presentation model, which will define the graph-
ical presentations of system output, together with audio and
video media. The constructs for modelling such presenta-
tions are already defined into MARIA XML graphical CUI.
If the current vocabulary is not expressive enough, such con-
structs will be refined. In particular, it will be considered
the introduction of an explicit expression of the well-known
CARE[1] properties for multimodal interfaces. Assigning
such properties not only to graphical UI parts, but also to the
gesture definitions can enable the automatized derivation of
different versions of the same gesture CUI, in order to sup-
port different recognizing technologies, and also for defin-
ing different gestures with the same effect. For instance, the
aforementioned head rotation gesture can be performed ei-
ther starting from the right or from the left. From a descrip-
tive point of view these gestures are different, but from the
interaction point of view they can be defined as equivalent.
These gestures can be commonly complemented with a fore-
finger oscillation, in this case we have the redundancy.

The Dialog model will contain the constructs for defining
the complex gesture availability according to the different
UI states. It will define which gestures can be used in a
given state and their temporal relations (which ones should
be performed in sequence, which ones can be performed in
parallel etc.), the assignment of gestures to effects and the
definition of the state transitions. The temporal relations be-
tween gestures can be defined using CTT [5] operators.

The depicted CUI meta-model should be able to describe
gesture interfaces taking into account an abstract technology
that has all the recognizing capabilities currently available.
However, as should be clear from the discussion in the Back-
ground section, different technologies with different recog-
nizing capabilities exist. Unfortunately, the differences be-
tween these devices cannot be reduced to a simple change of
vocabulary between different implementation technologies
(e.g. two different widget tookits for the graphical desk-
top platform). This means that aside the gesture CUI meta-
model, it is necessary also to describe in a coherent man-
ner the recognizing capabilities of a given set of devices.
The distinction that can be currently made is between re-
mote based, motion-tracking based and floor device based.
It is also possible to add to these categories the glove based,
due to the experiments that can be found in literature. These
sub-platforms should be described with a Gesture recognizer

model that should list the set of basic gestures that the sub-
platform is able to recognize and the composition operators
supported.

PRELIMINARY RESULTS
The work for the gesture CUI definition has started with the
application of the ideas described in the previous section to
multitouch, which can be considered the simplest gesture in-
teraction example. The proposed gesture description meta-
model consists of three main entities: Sample, Block and
Gesture.

Each Sample contains an identifier, a point, a type (start,
move, end) and a flag representing its state (consumed if
its data has been exploited or not consumed otherwise). It
models the information provided by the device about the on-
screen touches.

A Block represents an atomic gesture that can be recognized
from samples and performs updates on gesture state. The
blocks defined for multi-touch gestures are TouchStart,
TouchMove and TouchEnd, which recognize respectively new
touches, the location change of an existing touch, and the
end of an existing touch (finger lifted from the screen). Each
block reads the information contained in samples and op-
tionally updates its internal state and/or the gesture-global
state. When reading the information from a sample, a block
can switch to a completed state if the recognition finished
correctly or to an error state, if the recognition was not suc-
cessful. Blocks can share a sample identifier in order to con-
sume only samples having the same id and ignore the others
(without producing errors). This mechanism links together
blocks that deal with the same touch during the described
gesture sequence.

A Gesture contains a set B of Blocks and their connections.
S ⊂ B contains the blocks that represent the initial gesture
state (that is the atomic action to be recognized), C ⊂ B
contains the current state and F ⊂ B contains the final
states. When the recognition starts C ≡ S and the gesture is
considered recognized if a block b ∈ F∩C is completed (the
atomic action that represents has been recognized). When
an intermediate block completes, the gesture-defined block
connections are exploited in order to add elements to C. In-
stead, if a block in C do not recognize its atomic action, the
gesture is reset to its initial state. The gesture state contains
also the data related to the current touches, which is updated
by its inner blocks. When the device raises a touch-related
event, the gesture forwards it only to blocks in C. When
the block consumes a sample, it raises an event. This model
allows the definition of gestures in four simple steps:

1. Define the set of blocks needed, marking the initial and
final ones.

2. Define block connections. This specifies the gesture se-
quencing.

3. Define block shared identifiers, in order to assign the same
touch to different blocks.

4. Define sample consumed event handlers for blocks.

329

Figure 1. Prototype gesture description model

The first three steps are simply the gesture sequencing dec-
laration, which identifies how many touches are considered
and how the user will perform the interaction. Step 4 defines
the interaction effect on the application data.

Figure 1 shows the multitouch gesture description modelled
for the implementation of a zoomable finger-drawing can-
vas for the iPhone. The application recognizes two gestures,
allowing the user to draw lines on a canvas with his/her fin-
ger, and to zoom the view with the classical pinch gesture.
In Figure 1, rounded rectangles represent blocks. Starting
ones have a bolder line while double lines represent final.
The circle-enclosed numbers are touch identifiers, while bal-
loons represent event handlers for consumed samples, at-
tached to blocks. Lines between blocks define connections.
The drawing gesture is a simple pan (Figure 1, lower part),
represented by a pipe of a TouchStart, a TouchMove and a
TouchEnd block. Each block shares the same sample iden-
tifier. It is worth pointing out that the identifiers are not re-
lated to touch ordering: having the identifier number 3 does
not mean that the touch has to come after the number 1 and
2, but simply that it is different from them. The move block
has a sample consumed event handler that draws a line cor-
responding to touch point ∆x and ∆y.

The pinch has been modelled as a two-finger gesture (Fig-
ure 1, higher part), which starts with the first finger touch,
continues with a second finger touch. After that there is a
parallel moving of the first and the second finger, and fi-
nally the end of one of the two touches. The event handler is
the same for both move blocks: it evaluates the distance be-
tween the touch number 1 and 2 and updates the view zoom
accordingly.

While the interaction described is not really new, there are
some characteristics that should be pointed out. First of all,
the interaction is completely defined by the designer com-
posing building blocks. This means that it is possible to
define custom gestures, without reimplementing the touch
tracking. The designer has no more a single recognition
event, but it can enhance the gesture description with han-
dlers that provide intermediate feedback to the user, improv-
ing the interface usability. For instance, the designer can

decide to draw two arrows corresponding to touches while
performing the pinch gesture. These arrows converge for the
zoom in or diverge for the zoom out. This is typically not
possible with the high-level pinch zoom event: the appli-
cation receives the notification only when the gesture is per-
formed, without intermediate steps. Currently, the only solu-
tion is to track low level touch events. Last but not least, it is
possible to express parallel gesture interaction in a straight-
forward manner, which is simply declaring that the two ges-
tures work on different touches. Using the aforementioned
configuration of the touch identifiers, it is possible with the
prototype to draw lines while zooming the view and vice
versa.

CONCLUSIONS AND FUTURE WORK
This work proposed the application of model based
approaches for user interfaces to gesture interaction, in order
to overcome two main problems that currently affect such
modality. The first one is the existence of different recogni-
tion device with different capabilities that currently drive the
interaction design. The second one is the lack of a suitable
gesture definition meta-model, able to overcome the limi-
tation of handling atomic events related to high-level ges-
tures. A description model has been defined for multi-touch
interaction, which will be enhanced in the future for body
gestures and included as a platform for the MARIA XML
language.

REFERENCES
1. J. Coutaz, L. Nigay, D. Salber, A. Blandford, J. May, and

R. Young. Four easy pieces for assessing the usability of
multimodal interaction: the CARE properties. In
Proceedings of INTERACT, volume 95, pages 115–120,
1995.

2. R. Kennaway. Experience with and requirements for a
gesture description language for synthetic animation.
Gesture-Based Communication in Human-Computer
Interaction, 2915:449–450, 2004.

3. P. Kortum. HCI Beyond the GUI: Design for Haptic,
Speech, Olfactory, and Other Nontraditional Interfaces
(Interactive Technologies). Morgan Kaufmann
Publishers Inc. San Francisco, CA, USA, 2008.

4. S. Mitra and T. Acharya. Gesture recognition: A survey.
IEEE Transactions on Systems, Man and Cybernetics -
PART C, 37(3):311–324, 2007.

5. F. Paternò. Model-based design and evaluation of
interactive applications. Applied computing. Springer,
2000.

6. F. Paternò, C. Santoro, and L. D. Spano. Maria: A
universal, declarative, multiple abstraction-level
language for service-oriented applications in ubiquitous
environments. ACM Transaction in Computer-Human
Interaction, 16:19:1–19:30, November 2009.

7. S. Prillwitz, R. Leven, H. Zienert, T. Hanke, and
J. Henning. HamNoSys: Hamburg Notation System for
Sign Languages: an Introductory Guide. Signum Press,
1989.

330

	Introduction
	Background
	Gesture Concrete User Interface
	Preliminary Results
	Conclusions and Future Work
	REFERENCES

