
 1

Migratory User Interfaces Able to Adapt to Various
Interaction Platforms

Renata Bandelloni, Fabio Paternò

ISTI-CNR,Via G.Moruzzi 1, 56124 Pisa, Italy.
{renata.bandelloni , fabio.paterno}@isti.cnr.it

Abstract. The goal of this work is the design of an environment for supporting
run time migration of Web interfaces among different platforms. This allows
users interacting with a Web application to change device and continue their in-
teraction from the same point. The migration takes into account the runtime
state of the interactive application and the different features of the devices in-
volved. We consider Web interfaces developed through a multiple-level ap-
proach using: the definition of the tasks to support, the abstract description of
the user interface, and the actual code. The runtime migration engine exploits
information regarding the application runtime state and higher-level informa-
tion on the available target platforms. Runtime application data are used to
achieve interaction continuity and preserve usability, while information on the
different platforms is considered to adapt the application’s appearance and be-
haviour to the specific device. The paper also discusses a sample application in
order to provide concrete examples of the results that can be achieved through
our approach.

Keywords: Migratory interfaces, Run-time architectural support, Multi-platform
applications

1 Introduction

Today we are witnessing a proliferation of new mobile devices offering the possibility
of accessing the Internet through different modalities. Everyday life is becoming a
multi-platform environment where people are surrounded by devices through which
they can get connected in different ways.

Many efforts are currently aimed at supporting users to interact through multiple de-
vices. Users like to move freely and still be able to access their applications through
the device at hand. For example, the use of a desktop PC to perform on-line opera-
tions can be switched to a wirelessly connected personal device, when the user needs
to leave the office and the operations on the way are not yet completed. To this end, a
multi-platform migration service is necessary, by which the user can interact with
applications while changing devices and still maintain interaction continuity. Migra-
tion can satisfy many user needs such as these. There are two main issues concerning

* Manuscript

 2

this kind of service. Firstly, the diversity in features of the platforms involved in mi-
gration, like different screen size, interaction facilities, processing power and energy
supply, can make an application developed for a desktop, unsuitable for a PDA and
vice versa. Thus, an application cannot migrate as is from one device to another, and
must be adapted at runtime, taking into account the diversity of the devices involved
(see for example, Kaikkonen and Roto, 2003). The second issue concerns interaction
continuity. Users who want the application to migrate, do not want to have to restart
the application on the new device; they want to continue their interaction from the
same point where they left off, without having to re-enter the same data and go
through the same long series of links to get to the page they were visiting on the pre-
vious device (these issues are introduced in Song et al. 2003). Two main kinds of
information are relevant in performing migration: static information referring to the
features of the devices, and runtime information that refers to the state of the migrat-
ing application, which can be summarised by the history of user interactions with the
application, including visited pages, submitted data and results of previous data proc-
essing. There are several techniques for migrating user interfaces to different devices,
in particular to small screens. Herein we focus on interaction continuity and device
adaptation at runtime that takes into account usability principles. We consider differ-
ent platform-specific versions of the same application, starting with a general task
model (Paternò and Santoro, 2003) from which it is possible to generate the actual
application by means of the TERESA tool (Mori et al. 2003). We consider the migra-
tion of TERESA-generated applications. This tool produces a description of the pages
and the interactions that they support at different abstraction levels. Runtime data on
the state of the application for which migration is required will be collected locally
from the platform requesting migration. This information is transmitted to the server
in order to recreate the corresponding state in the application for the target device.

The issues raised by a device-aware runtime migration for Web applications were
introduced in (Bandelloni and Paternò, 2003). In this paper we provide a systematic
solution to such issues composed of an architecture, a set of algorithms and protocols,
and a prototype. This solution uses information created following a model-based de-
sign approach in order to obtain a migration service offering user interaction continu-
ity, platform awareness and runtime adaptability.

The paper is organised as follow. In section 2 we present an overview of related work
and in section 3 we introduce the TERESA approach to design and develop multi-
platform user interfaces. In section 4 we discuss the possible cases that should be
considered when migrating interfaces between different interaction platforms and in
section 5 we present the solution we adopted to support the runtime migration of Web
interfaces. The architecture of the migration service is presented in section 6, while
the reason for our architectural choices are discussed in section 7. In section 8 we
present a case study to show a sample application of the service. Finally, in section 9,
we provide some concluding remarks and an overview of the future extension of the
service.

 3

2 Related Work

Application migration is a field undertaken by several research projects, which ad-
dress it from different points of view. The growing interest in migration in the ubiqui-
tous computing field aims to make an application follow a user from one device to
another.
An interesting paper (Bharat and Cardelli, 1995) provides an overview of the main
matters concerning application migration. They present a programming model and an
implementation of a tool for developing migratory applications, placing no restriction
on the kind of application that can be built. The approach is agent-based: agents carry-
ing pieces of code and the state of the migratory application are sent from a host to
another where a server allows the agent to rebuild the migrating application. This
approach can also be used to build migratory interfaces into the agent, including inter-
face code and state. Such an approach is not suitable for our goals, our intent is to
build a migration service supporting several kind of platforms, from powerful station-
ary PCs to PDAs to cell phones. Most of them are mobile platforms, having to cope
with power consumption, low storage and elaboration capabilities. The processing
load involved with using agents that migrate to a platform hosting an agent server,
where the application is rebuilt at runtime, would be too heavy for most of the plat-
forms we have targeted in our migration service.

Our service is designed to support adaptation to interaction platforms while pre-
serving usability. This property has been called plasticity by some authors (Calvary et
al., 2001) who proposed a reference model for developing plastic user interfaces. This
reference model mainly use concepts developed in the model-based community over
the last decade (Einsenstein et al., 2001 and Paternò 2001). As indicated in the paper,
plasticity is not only obtained by rearranging the elements in a page: the tasks the user
can perform on one platform or another may also vary and this must be taken into
account in designing interface plasticity. An ontology for multi-surface interaction is
presented in (Coutaz at al, 2003), where the distribution of an interface over diverse
kinds of physical surfaces is considered, not only as screens of computational devices,
but also as any everyday object that can be treated as a surface, such as a wall or a
table. A classification is made on the basis of a set of properties able to describe the
surface features and is useful for deciding if a surface can be used to support a certain
application interface.
Kaikkonen and Roto, 2003 prove how the different features of the interaction plat-
forms can influence Web applications usability. Different screen size, interaction
facilities, processing power and energy supply, can make a Web application devel-
oped for a desktop, unsuitable for a PDA and vice versa. Thus, an application cannot
migrate as it is from one device to another, and must be adapted at runtime, taking into
account the diversity of the involved platforms.
An overview of the techniques used in adapting user interfaces to different devices, in
particular to small screens rely on size reduction and data summarisation as it is shown
in (MacKey, 2003). This approach raises the risk to make the application unusable
because objects on the page become difficult to recognise. We want to overcome this
kind of problem adapting interfaces to different platforms, taking into account the
effects on the usability of the application.

 4

In (Song et al. 2002) aspects concerning interaction continuity are shown. The runtime
state of the migrating application must be preserved on the target device, to allow
users to continue the interaction from the exact point where they left. Interaction con-
tinuity is one key factor in our migration service, what is new in our approach is that
when target and source platforms involved in migration are different, the runtime state
will not be sent to the target platform as it is, data are transformed and adapted to the
features of the target platform.

3 Model-base Development of Platform-Aware User Interfaces

As we mentioned in the introduction, in this work we present a solution to obtain
migration of interfaces developed by the TERESA authoring environment. The reason
for this choice is that TERESA supports a model-based development and is able to
maintain links between descriptions of the user interface at different abstraction levels.
Our solution exploits such information. In this section we recall some basic concepts
related to TERESA for the readers who are not familiar with it. More information is
available in (Mori et al., 2001). TERESA (publicly available at
http://giove.cnuce.cnr.it/teresa.html) is intended to provide a complete semi-automatic
environment supporting a number of transformations useful for designers to build and
analyse their design at different abstraction levels and consequently generate the con-
crete user interface for a specific type of platform.

The abstraction levels considered are: the task model, where the logical activities to
support are identified; the abstract user interface, in this case the interaction objects
(but classified in terms of their semantics, still independent of the actual implementa-
tion) are considered, and the concrete user interface (the actual corresponding code).
The main transformations supported in TERESA are:
• Presentation Task Sets and Transitions Generation. From the specification of a

ConcurTaskTrees (Paternò, 1999) task model it is possible to obtain the set of tasks,
which are enabled over the same period of time according to the constraints indi-
cated in the model. Such sets, depending on the designer’s application of a number
of heuristics supported by the tool, might be grouped together into a number of
Presentation Task Sets (PTSs) and related Transitions among the various PTSs.

• From Task Model-related Information to the Abstract User Interface. Both the
task model specification and PTSs are the input for the transformation generating the
associated abstract user interface, which will be described in terms of both its static
structure (the “presentation” part, which is the set of interaction techniques perceiv-
able by the user at a given time) and dynamic behaviour (the “dialogue” part, which
indicates what interactions trigger a change of presentation and what the next pres-
entation is). The structure of the presentation is defined by elementary interactors
characterised in terms of the task they support, and their composition operators.
Such operators are classified according to the communication goals to achieve: a)
Grouping: indicates a set of interface elements logically connected to each other; b)
Relation: highlights a one-to-many relation among some elements, one element has
some effects on a set of elements; c) Ordering: some kind of ordering among a set of

 5

elements can be highlighted; d) Hierarchy: different levels of importance can be de-
fined among a set of elements. There is also the option to automatically generate the
abstract UI for the target platform (instead of going through the two transformations
mentioned before), starting with the currently loaded (single-platform) task model,
and using a number of default configuration settings related to the user interface
generation.

• From the Abstract User Interface to the User Interface for the specific platform.
This transformation starts with the abstract user interface, it is possible to move into
the related concrete user interface for the specific interaction platform selected. A
number of parameters related to the customisation of the concrete user interface are
made available to the designer in order to obtain the concrete user interface. Lastly,
the tool generates the code according to the type of platform selected from the con-
crete user interface description. Currently it generates code in HTML, XHTML Mo-
bile Profile and VoiceXML.

4 Runtime Migration Cases

Different types of runtime migration can be identified, along with different levels of
complexity for each one of them:

• Total Migration: the client application migrates totally from a device to the
other.

• Control Migration: the client application is divided into two parts, one for
user interaction (control part) and one for information presentation (presenta-
tion part). The control part remains on one device, while the presentation one
migrates to the other device, or vice versa (an example is discussed in Nich-
ols et al. 2002).

• Mixed Migration: the client application is split into several parts, concerning
both control and presentation and different parts are distributed over two or
more devices.

In this work, we focus on Total Migration, with the goal to support a runtime migra-
tion that takes into account the differences between the two platforms involved.
TERESA structures user interfaces into presentations and transitions among them.
When we migrate a presentation from a platform to another one the runtime support
first identifies the closest presentation in the target platform. The difference between
presentations in different platforms is calculated in terms of the number of logical
tasks supported. A task can be supported through different interaction techniques.
However, the logical meaning of the task is still the same. Taking into account interac-
tive applications developed by means of TERESA we can identify the following situa-
tions concerning the runtime migration of a presentation between two platforms (see
also Figure 1):

• The migrating presentation corresponds to one target presentation. In this
case the target page to be loaded on target device can be immediately identi-
fied through a one by one mapping. The two presentations can differ in the
number of supported tasks, in particular the target presentation can support:

 6

o Same tasks. Even if the same tasks are supported by the two presen-
tations, the runtime state data may need to be modified too, because
tasks can be implemented by means of different kinds of concrete
objects.

o Lower number of tasks. As in previous case, there can be a mapping
of data concerning corresponding tasks. Data concerning tasks not
supported by the target presentation are ignored.

o Higher number of tasks. Source tasks are treated as in previous
cases, while target tasks for which information cannot be retrieved
from source runtime state data, are untouched and loaded with their
default values.

• The migrating presentation corresponds to multiple target presentations,
among which the tasks set of the source presentation are spread. In this case
the target presentation is identified by computing the one having the highest
number of tasks in common with the source one. In case that more than one
target presentation has the same similarity degree according to this criterion,
it is chosen the one supporting the task associated with the last concrete ob-
ject through which the user interacted with the application on the source side.

• Multiple presentations in the source platform correspond to one presentation
in the target platform. In this case the migrating task set will correspond to
part of the task set supported by one of the target presentations.

Figure 1: The possible relationships between source and target presentations.

 7

Control Migration is a more challenging issue than Total Migration. It requires a fur-
ther analysis of the abstract user interface of the migrating page in order to decide at
runtime if and how it can be divided into control and presentation parts. When split-
ting is possible, two new abstract user interfaces have to be generated corresponding
to the two parts. From the new abstract user interfaces, the control and presentation
pages must be generated and loaded onto the source and target devices. Control Mi-
gration requires more runtime processing for the analysis of the set of tasks to be con-
sidered. The choice to address only Total Migration herein was dictated by considera-
tions of complexity. Total migration provides the foundation on which we will build to
introduce Control Migration.

5 Our Migration Solution

Our migration service is designed to meet two main requirements, device awareness
and interaction continuity. To keep interaction continuity it is necessary to collect
information concerning the runtime state of the migrating application, to activate the
application on the target device, from the same point where it left. Since migration
will involve different types of platforms, runtime state will not be migrated as it is.
Data concerning the platform type will be used to adapt the runtime data collected on
the source platform to the target one. Hence we have implemented a mapping algo-
rithm that makes use of both runtime state and involved platform data, to load on the
target the application version fitting its features, and keeping state consistency with
the state the application had at migration time.

The first step is to identify the page to be loaded on the target device. Different plat-
form specific version of an application produced by TERESA can have a different
number of pages and also support a different set of tasks, hence it is not possible to
create a one-to-one correspondence between presentations for different platforms.
When migration is required, the logical description of the page is retrieved. The Ab-
stract User Interface, describing the features of the application for the kind of platform
corresponding to the source one, is accessed and the presentation corresponding to the
migrating page is retrieved. The set of tasks contained in the presentation, hence sup-
ported by the migrating page is extracted and used by the mapping algorithm in order
to find the right target page.
The mapping is performed at Abstract User Interface level. First it is retrieved the
kind of the target platform in order to select the target Abstract User Interface that is
used to identify the target presentation. From the set of tasks previously contained in
the source presentation, the tool identifies the most similar abstract presentation in the
target Abstract User Interface and then the corresponding page in the application ver-
sion for the target platform.
Similarity is calculated in terms of tasks supported, the higher number of tasks the
source and target presentation share, the more similar the presentations are. This simi-

 8

larity criterion can lead to ambiguity in case more than one target presentations share
the same number of tasks with the source one, hence they have the same similarity
degree. To resolve this conflict, we identify the target presentation supporting the task
associated with the interaction object last modified by the user, since the user is most
likely to continue interaction from that point. Once the target page has been identified,
it is necessary to calculate the state of the objects contained in the corresponding page,
which will be communicated to the target device along with its URL The state con-
tains information regarding the results of previous performed user interactions (ele-
ments selected, text entered and so on). For each source object the corresponding
target one is identified through the identifier of the corresponding task in the source
presentation and its corresponding in the target presentation. If the source concrete
object and the target concrete object have the same type, the runtime state of the
source object can be applied to the target one as it is, otherwise it will be adapted to
match the features of the target object.

One potential issue for migrating interfaces to a target device where the same task is
supported by means of different interaction objects is whether the change of user inter-
face can disorient the users. Since our migration service is designed to address
TERESA-generated interfaces, this potential problem is taken into account because
the tool takes into account the tasks that the application should support and for each of
them only the concrete objects suitable for their support are used for implementation.
The actual interaction object to be used in generating the user interface will also de-
pend on the kind of platform it is intended for. Hence, interaction objects that can
disorient the user will not be proposed to support the task performance.

6 Migration Service Architecture

Our migration service relies on a server machine working as a Web server making
accessible the platform-specific application implementations as well as a migration
server managing context information to support migration requests. Client platforms
use the migration client loaded from the server in order to enable or disable the possi-
bility of receiving incoming applications and migrating Web applications. References
to all platforms, which enable the reception of incoming applications, are stored in the
server.
Figure 2 shows the user interface for the control service: it is possible to access the list
of migratory applications available and the list of target systems that are currently
enabled to the migratory service, request a dynamic update of such information and
trigger the migration of the current application.

 9

Figure 2: The interface for the migration service in the PDA and desktop envi-
ronments.

 When a platform asks for migration, the request sent by the locally running migra-

tion client reaches the migration server, which will exploit both runtime and static
context data to perform the presentation mapping process as described in Section 5.
The corresponding page and its runtime context for the target device will be finally
sent to the migration client in the target platform that will open a local browser win-
dow allowing users to continue their interaction (the sequence of functionalities to
perform is indicated in Figure 3).

 10

Figure 3: The Migration Process.

A number of modules and algorithms are used both for starting up the migration server
and performing migration requests.

6.1 Web Server Startup. No specific algorithms have been implemented for the Web
server.

6.2 Migration Server Startup. The migration server must be started in order to sup-
port migration requests. In this phase an internal data structure is filled in with static
data concerning all applications supported by the migration service. For each applica-
tion and for each platform, information regarding associations between different ab-
straction levels is built to allow the matching of the presentations to supported tasks
and the Abstract User Interface elements to the corresponding user interface elements.
Hence, for each platform-specific version of the application, the XML file defining the
corresponding abstract user interface is analysed to retrieve the set of presentations
making up the specific version of the application and the tasks supported by each
presentation. Finally, for each presentation the static data are completed by adding the
concrete type, name and identifier of the concrete elements implementing the sup-
ported tasks. The concrete data are retrieved by analysing the file implementing each
presentation.

6.3 Migration Service Loading. Users who want to access the migration service have
to request it by loading the client service manager, which depends on the actual plat-
form. In any case, the client migration service will store information on the platform
accessed by the user communicating it to the server, and a graphic interface is acti-
vated. A further client module is started in order to allow incoming application migra-
tion acceptance.

 11

6.4 Client Migration Request Sending. On the source client side, JavaScript func-
tions collect runtime data concerning the URL of the loaded application page and the
state of the interaction objects contained in the page when the user requests migration.
A migration request, including the IP address of the target device and all runtime data
collected into a single string, is sent to the server by submitting a form, which causes
the migration server run-time module activation.

6.5 Server Migration Request Elaboration. Once the migration request is received,
the server checks whether the target IP address matches a currently connected plat-
form, and the corresponding platform type is retrieved, hence the URL string of the
migrating page is analysed in order to extract the name of the migrating application.
Also the set of corresponding tasks are retrieved and matched against the whole set of
presentation data corresponding to the target version of the application in order to
retrieve the most similar presentation. The most similar target presentation is the one
sharing the highest number of supported tasks with the source presentation. In case
this criterion identifies multiple presentations, the runtime state data is used to identify
the one containing the task corresponding to the last interaction performed by the user,
as described in section 5. At this point it is possible to build the URL string that must
be loaded on the target device. Once the target URL has been built, the service has to
map the state of source interaction objects to the target ones. Information related to
tasks that are not supported by the target presentation is eliminated. Tasks imple-
mented by the same kind of interaction objects maintain the runtime state, and their
concrete name and ID must be updated. Tasks implemented by means of different
interaction objects also need information concerning such objects to be adapted.
Once the mapping of both the URL and runtime state is completed, a connection is
opened with the target platform, which will receive the target URL string followed by
the target runtime state data.

6.6 Client Migration Request Acceptance. On the target client side, the migration
application keeps listening for connection requests coming from the server. Once a
connection is received, the URL of the page to be loaded and runtime state data are
read from it. The incoming URL is loaded in a new browser window in case of a desk-
top system, and into the browser window that is already opened in case of PDAs.
Hence, runtime state data are applied to the concrete object of the loaded page. The
application of state information to the interaction objects is performed by means of
Javascript functions implemented on client side.

7 Architectural Choices and System Performance Considerations.

The core of our system is the server. The decision to use a server, rather than relying
on a peer-to-peer service, stems from considerations on the computational load in-
volved with supporting migration. The mapping algorithm needs to access the ab-
stract description and the concrete implementation of each possible platform to be

 12

supported. Using a peer-to-peer service would mean replicating such information on
each supported device and the migration engine would have to be installed on each
platform. This raises the risk of data inconsistency and system maintenance would
become hard to handle, requiring installation of the engine on each platform every
time the service is updated.
Moreover, it must be borne in mind that power consumption is a limiting factor when
mobile devices are used. By adopting the chosen solution, we intend to delegate most
of the computational load to the server, which is assumed not to have power problems,
and require the clients to perform only the two basic operations of sending migration
requests and loading the data sent by the server after processing.
At migration server start-up, for each application the Abstract User Interface of each
platform-specific version is analysed as well as its corresponding implementation.
This is a large amount of data to be processed and it increases with the number of
supported application and platforms. The building of mapping tables used by the mi-
gration server actually requires a considerable amount of time. In any case, such
computations need to be performed only once, off-line at the first initialisation of the
server. Once all the data have been loaded, the runtime processing for serving migra-
tion requests are performed by accessing data through hash keys, hence in a very short
time. This makes it possible to avoid long latency times for the user request to be
served.

8 A Case Study

In this section we discuss a case study that provides concrete examples of the results
that can be achieved through our approach. We first introduce a couple of scenarios
that outline the main features covered by the migration service. On the basis of the
scenarios, we will show the user interface of a sample migrating, multi-platform appli-
cation, focusing on the operations that the migration service must perform in order to
keep interaction continuity and to adapt the migrating application to the different kind
of platforms involved.

8.1 The scenarios
Louis is walking down the street on his way to work. He is thinking about vacations
and decides to check his bank account to see how much he can afford. Louis turns on
his PDA and accesses the bank’s web site. He had previously registered with the
bank’s web service, hence the bank application automatically identifies the PDA as
Louis’ personal device. From the main page Louis chooses to access his bank account
data. He does not need to enter any personal information or the account number, the
application has already retrieved all data after having identified the PDA and his bal-
ance is promptly displayed. Louis cannot remember the previous situation and would
like to access information on the last operations performed on his account. He re-
quests that the application display the 10 last operations, and the data appear on the

 13

PDA. Only the amounts of money added or subtracted at each operation are shown.
To access more details concerning each of the operations, a new page must be loaded.
Moreover, operation data are split into two pages, and are not displayed together. Too
tedious, it would be much more comfortable to have a full overview of operations and
their details. However, such a feature is not supported by the PDA application version:
it would be useless to try and show a large table on a small-sized PDA screen.
Meanwhile, Louis has reached his office and turned on his Desktop PC. Accessing the
migration function on the PDA, he requests to have the bank application migrate to the
Desktop PC. The application is automatically shut down on the PDA and is activated
on the Desktop in the same runtime state it was when the migration was initiated.
Bank account related operations are immediately shown on the desktop without Louis
having to re-enter any data or make any requests, as he would have had to do if he had
accessed the application directly from the desktop. The Desktop screen displays a
table showing detailed information for each of the latest 10 operations performed on
the bank account. Louis can easily see that the last operation is a payment by the com-
pany he works for, a reimbursement for travel expenses incurred during the confer-
ence he attended four months ago. On the other hand his salary has not yet been cred-
ited to his account.

Louis decides to go to the bank’s branch office personally, in order to withdraw the
money he plans to spend during his vacations. Through the desktop bank application
he checks to see how many people are currently waiting to be served. He sees that the
estimated waiting time is one hour and a quarter, and decides to pick up a reservation
ticket. He gets ticket number 40 and uses the migration service to have the bank appli-
cation migrate back to the PDA where he can see his reservation number and the real-
time situation in the branch office. He can also activate an alarm feature on the PDA,
which will alert him when his turn is getting close.

In the second scenario Louis is at home and accesses the bank application through his
Desktop PC. After having entered identification data, he is allowed to access the bank
services. He needs some money transfer in order to pay the fee for a conference regis-
tration and accesses the page reserved to on-line operations. He starts filling in the
form to perform the transfer, meantime he realises that it is late and it is time to go to
work. Through the migrating service, he can migrate the page he was interacting with
on his own PDA. On the PDA screen, only the part of the form Louis was filling in
when asking for migration is shown and he can complete the form adding the missing
data through his PDA, while he catches the metro to go to his office. Before submit-
ting data, he wants to be sure of their correctness and accessing the previous page, he
can control the data previously inserted through the Desktop PC. The form is correct
and he can submit it. The registration to the conference is now completed.

 14

8.2 The Migrating Web Bank Application.

In this section we introduce the Web Bank Application, a sample application built on
the basis of the scenarios described in section 8.1. The application is a typical bank
application that allows registered users to access their own private data and perform
on-line operations. We are presenting here only the most relevant application features
outlining how they can benefit of the migration service.

When a user accesses the Web Bank Application from a Desktop PC, he is always
inquired about identification data, in order to be recognised by the application and
being allowed to access the Bank Application Services. A user accessing the applica-
tion for the first time, can complete a registration form in order to get a login and a
password. Once the registration is completed, a user accessing from a PDA will auto-
matically gain access to the application without having to enter identification data.
Because of security matters, such a task is not enabled on the Desktop version.

Figure 4. The Desktop Main Page

 15

Figure 5. The PDA Main Page

In Figure 4, it is shown how the application appears to a user loading it from a Desk-
top PC. If migration to PDA is required at this point, and the user previously regis-
tered to the Bank service, the PDA version will not show the same accessing form, the
automatic access task will be activated and the user will be identified (Figure 5). Se-
lecting access to information on his personal bank account, the user, Louis in this
example, will see immediately the information required, without having to enter any
identification data.
In this migration case, after the identification of the target page, the migration service
will recognise that the automatic access from PDA is possible, since the user previ-
ously registered to the bank service. In addition, there is a set of tasks supported by
both the corresponding presentations, such tasks are: BankAccoutAccess, Opera-
tionsAccess, CumulatedIterestsAccess, InvestmentsAccess and CreditCardAccess. On
the Desktop version, the above mentioned tasks are implemented through clickable
button images, while the PDA version implements them by means of simple links. The
migration service will have to recognise the different implementation of the tasks and
adapt the runtime state retrieved from the page loaded on the Desktop to the one to be
loaded on the PDA.
Let us suppose that Louis has accessed his bank account data and selected to have
information on the last 10 money movements performed. To see all the operations
selected he will have to access two pages and one more page has to be accessed to
have more detailed information concerning each operation (Figure 6).

 16

Figure 6: The PDA interface for checking the bank account.

To have a complete single view of the operation selected and their detail, Louis decide
to migrate to the Desktop PC. Following the criterion of the most similar page, migra-
tion from any of the PDA page presented, the resulting page on the Desktop is the one
showed in Figure 6.

Another significant migration case, is when a task performed on the migrating page
enables a further task on the target platform, that was not supported by the source
platform. The Web Bank Application allows a user to reserve a ticket for accessing the
real bank office and also the monitoring of the real-time office situation. Only on the
PDA version, the user can ask the application to keep checking the real-time situation
and alert the user when his turn is getting closer. Such a task is not present on the
Desktop version, because it is supposed to be useful only in case the user is close to
the bank office and waiting for his turn. The alerting service is enabled only after a
ticket has been reserved. Figure 7 and 8 show the steps Louis has to perform in order
to check the office situation and reserve his ticket.

 17

Figure 7. Desktop Real-time Check.

Figure 8. Desktop Ticket Reserved.

 18

Migration required for one of both Desktop pages shown in Figure 7 and 8 will iden-
tify the PDA page shown in Figure 9, where the user can decide to activate the alert
service.

Figure 9. Real-Time Monitoring on PDA platform.

The above mentioned migration case does not show only the activation of a task from
one platform to the other, it is also a good example of a migrating page containing a
task performed accessing to a different set of domain objects. On the desktop real-
time monitoring page (Figure 7), the task ShowRealTimeState is performed accessing
the information composed of the objects: opened gates, people waiting, estimated
waiting time, while set of information accessed by the corresponding task is the PDA
version (Figure 9) is composed of the elements: opened gates, people before you,
estimated time and your ticket number.
The following migration case is based on scenario 2 (section 8.1). Figure 10 shows the
page Louis is interacting with before asking for migration. Let us imagine that he has
filled in the first five fields and now wants to continue on his PDA. The first step is
performed by the migration service in order to retrieve the most similar PDA page. It
thus identifies two presentations containing the same number of tasks. The second step
makes the migration server select the page that contains the object implementing on
the target platform the task last performed by the user. As a result, the page shown in
Figure 10 will be sent to the PDA and loaded. Any data previously inserted in the
form by the user are not lost, and can be visualised by accessing the previous page on
the PDA.

 19

Figure 10. Desktop Bank Transfer Form.

9 Conclusions and Future Work.

We have discussed how to provide migratory interfaces able to support interaction
continuity and usability. The user interfaces are developed following a model-based
approach. A first prototype for total migration addressing applications obtained
through the TERESA tool has been implemented, and we show an example of applica-
tion. This approach opens up the possibility of intelligent environments able to sup-
port users through various platforms and allowing them to move from one platform to
another one without having to restart the session from scratch. Currently, we are work-
ing on improving the collection of data on the run-time state in order to make the
system more thorough and improve the support for interaction continuity. Future work
will be dedicated to extending this approach in order to support the Control Migration
as introduced in the section discussing run-time migration cases.

Acknowledgments

This work has been supported by the IST EU R&D CAMELEON project
(http://giove.cnuce.cnr.it/cameleon.html). We would like to express our appreciation

 20

to the colleagues in the project and the HIIS laboratory
(http://www.isti.cnr.it/ResearchUnits/Labs/hiis-lab/) for useful discussions.

References

R. Bandelloni and F.Paternò, Platform Awareness in Dynamic Web User Interfaces Migration,
Proceedings Mobile HCI 2003, pp.440-445, LNCS 2795, Springer Verlag, 2003.

K. A. Bharat and L. Cardelli. Migratory Applications. In proceedings of User Inteface Soft-
ware and Technology (UIST ‘95). Pittsburgh PA USA. November 15-17, 1995. pp. 133-
142.

G. Calvary, J. Coutaz., D. Thevenin. A Unifying Reference Framework for the Development of
Plastic User Interfaces. IFIP WG2.7 (13.2) Working Conference, EHCI01, Toronto, May
2001, Springer Verlag Publ., LNCS 2254, M. Reed Little, L. Nigay Eds, 2001, pp.173-192.

J. Coutaz, C. Lachenal, S. Dupuy-Chessa. Ontology for Multisurface Interaction. Proceedings
INTERACT 2003. IOS Press. Zurich, pp.447-453, September 2003.

J. Einsenstein, J.Vanderdonckt, A. Puerta, Applying Model-Based Techniques to the Develop-
ment of UIs for Mobile Computers, Proceedings IUI'01: International Conference on Intelli-
gent User Interfaces, pp 69-76, ACM Press, 2001.

A. Kaikkonen and V.Roto. Navigating in a Mobile XHTML application. In Proceedings ACM
CHI 2003. Ft. Lauderdale, Florida, April 5-10, 2003. Vol.5, pp. 329-336.

B. MacKey. The gateway: A Navigation Technique for Migrating to Small Screens. Doctoral
Consortium, CHI 2003. Ft. Lauderdale, Florida, April 5-10, 2003. pp. 684-685.

G. Mori, F. Paternò, and C. Santoro. Tool support for designing nomadic applications. In
Proceedings of IUI 2003 . ACM Press, 2003. pp. 141–148.

J. Nichols, B. A. Myers, M. Higgins, J. Hughes, T. K. Harris, R. Rosenfeld, M. Pignol. Gener-
ating remote control interfaces for complex appliances. Proceedings ACM UIST’02. Octo-
ber 27 – 30. Paris, France. Vol.4, pp.161-170.

F. Paternò, Model-Based Design and Evaluation of Interactive Application. Springer Verlag,
ISBN 1-85233-155-0, 1999.

F. Paternò, C.Santoro, A Unified Method for Designing Interactive Systems Adaptable to Mo-
bile and Stationary Platforms, Interacting with Computers, Vol.15, N.3, pp 347-364, El-
sevier, 2003.

H. Song, H. Chu, S. Kurakake. Browser Session Preservation and Migration. In Poster Session
of WWW 2002, Hawai, USA. 7-11. May, 2002. pp. 2.

